यदि $x, y, z$ धनात्मक वास्तविक संख्या हैं, तो निम्नलिखित में से कौन से समीकरण $x=y=z$ को संकेत करते हैं ?
$I.$ $x^3+y^3+z^3=3 x y z$
$II.$ $x^3+y^2 z+y z^2=3 x y z$
$III.$ $x^3+y^2 z+z^2 x=3 x y z$
$IV.$ $(x+y+z)^3=27 x y z$
केवल $I, IV$
केवल $I, II, IV$
केवल $I, II, III$
$I, II, III, IV$
यदि समीकरण${x^3} + p{x^2} + qx + r = 0$ के दो मूलों का योग शून्य हेा तो $pq$ का मान होगा
माना $a$ के धन पूर्णांक मानों, जिन के लिए $\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$ है, का समुच्चय $\mathrm{S}$ है। तो $\mathrm{S}$ में अवयवों की संख्या है।
समीकरण $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$ की संख्या है:
यदि ${x^3} + 8 = 0$ के मूल $\alpha , \beta$ तथा $\gamma$ हैं, तो वह समीकरण जिसके मूल ${\alpha ^2},{\beta ^2}$ तथा ${\gamma ^2}$ है, होगा
यदि $x$ वास्तविक है तो $\frac{{{x^2} + 34x - 71}}{{{x^2} + 2x - 7}}$ का मान निम्न के बीच में नहीं होगा