सभी वास्तविक संख्याओं $x$ का वह समुच्चय जिसके लिये ${x^2} - |x + 2| + x > 0,$ होगा
$( - \infty ,\,\, - 2)\, \cup (2,\,\infty )$
$( - \infty ,\,\, - \sqrt 2 )\, \cup (\sqrt 2 ,\,\infty )$
$( - \infty ,\,\, - 1)\, \cup (1,\,\infty )$
$(\sqrt 2 ,\,\infty )$
यदि $2+3 i$, समीकरण $2 x^{3}-9 x^{2}+ k x-13=0$, $k \in R$ का एक मूल है, तो इस समीकरण का वास्तविक मूल
यदि $x$ वास्तविक है, तो व्यंजक $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ निम्न अंतराल में समस्त मानों को ग्रहण करता है
यदि समीकरण $8{x^3} - 14{x^2} + 7x - 1 = 0$ के मूूल गुणोत्तर श्रेणी में हों, तो मूल होंगे
समीकरण $\mathrm{x}\left(\mathrm{x}^2+3|\mathrm{x}|+5|\mathrm{x}-1|+6|\mathrm{x}-2|\right)=0$ के वास्तविक हलों की संख्या है ...........
यदि $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5$ हो, तो $x$ बराबर है