सभी वास्तविक संख्याओं $x$ का वह समुच्चय जिसके लिये ${x^2} - |x + 2| + x > 0,$ होगा
$( - \infty ,\,\, - 2)\, \cup (2,\,\infty )$
$( - \infty ,\,\, - \sqrt 2 )\, \cup (\sqrt 2 ,\,\infty )$
$( - \infty ,\,\, - 1)\, \cup (1,\,\infty )$
$(\sqrt 2 ,\,\infty )$
$\frac{{\log 5 + \log ({x^2} + 1)}}{{\log (x - 2)}} = 2$ के हलों की संख्या है
समीकरण $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$ की संख्या है:
मान लें कि $x, y$ दो अंकों वाली प्राकृत संख्याएँ हैं। संख्या $x$ के अंकों को उत्क्रमित $(reverse)$ करने पर संख्या $y$ प्राप्त होती हैं। यदि प्राकृत संख्या $m$ इस प्रकार है कि $x^2-y^2=m^2$ तो $x+y+m$ का मान होगा:
यदि $\alpha , \beta , \gamma $ समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
दि ${\log _2}x + {\log _x}2 = \frac{{10}}{3} = {\log _2}y + {\log _y}2$ तथा $x \ne y,$ तब $x + y =$