मान लीजिये कि $a, b, c$ शुन्येतर $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $a+b+c=01$ यदि $q=a^2+b^2+c^2$ तथा $r=a^4+b^4+c^4$ हो तो, निम्नलिखित में से कौन सा कथन आवश्यक रूप से सही है?

  • [KVPY 2014]
  • A

    $q^2 < 2 r$

  • B

    $q^2=2 r$

  • C

    $q^2 > 2 r$

  • D

    $q^2-2 r$ के दोनों धन और ऋण मान लिए जा सकते हैं।

Similar Questions

यदि समीकरण ${x^2} + 2ax + 10 - 3a > 0$ है तथा$x \in R$, तब

  • [IIT 2004]

समीकरण $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$ के हल $x$ का मान निम्न है :

  • [KVPY 2015]

$m$ के पूर्णांक मानों की संख्या, जिसके लिये द्विघात व्यंजक $(1+2 m ) x ^{2}-2(1+3 m ) x +4(1+ m ), x \in R$ सदैव धनात्मक हो, होगी

  • [JEE MAIN 2019]

समीकरण $x^5-6 x^4+11 x^3-5 x^2-3 x+2=0$ के सभी अपूर्णांक मूलों का योग है

  • [KVPY 2017]

समीकरण $5+\left|2^{x}-1\right|=2^{x}\left(2^{x}-2\right)$ के वास्तविक मूलों की संख्या है

  • [JEE MAIN 2019]