यदि समीकरण ${x^3} + x + 1 = 0$ के मूल $\alpha ,\beta ,\gamma $ हों, तो ${\alpha ^3}{\beta ^3}{\gamma ^3}$ का मान होगा
$0$
$-3$
$3$
$-1$
$m$ के पूर्णांक मानों की संख्या, जिसके लिये द्विघात व्यंजक $(1+2 m ) x ^{2}-2(1+3 m ) x +4(1+ m ), x \in R$ सदैव धनात्मक हो, होगी
यदि $x, y, z$ धनात्मक वास्तविक संख्या हैं, तो निम्नलिखित में से कौन से समीकरण $x=y=z$ को संकेत करते हैं ?
$I.$ $x^3+y^3+z^3=3 x y z$
$II.$ $x^3+y^2 z+y z^2=3 x y z$
$III.$ $x^3+y^2 z+z^2 x=3 x y z$
$IV.$ $(x+y+z)^3=27 x y z$
$\lambda $ के किस मान के लिये समीकरण ${x^2} + (2 + \lambda )\,x - \frac{1}{2}(1 + \lambda ) = 0$ के मूलों के वर्गो का योग न्यूनतम होगा
माना एक त्रिभुज की तीन भुजाओं की लंबाईयाँ $a, b, c$ है, जो $\left(a^2+b^2\right) x^2-2 b(a+c) \cdot x+\left(b^2+c^2\right)=0$ को संतुष्ट करती है। यदि $x$ के सभी संभव मानों का समुच्चय अंतराल $(\alpha, \beta)$ है, तो $12\left(\alpha^2+\beta^2\right)$ बराबर है............................
समीकरण $e ^{4 x }+ e ^{3 x }-4 e ^{2 x }+ e ^{ x }+1=0$ के वास्तविक मूलों की संख्या है