यदि $p$ तथा $q$ दो वास्तविक संख्याऐं इस प्रकार है, कि $p + q =3$ तथा $p ^4+ q ^4=369$ है, तो $\left(\frac{1}{ p }+\frac{1}{ q }\right)^{-2}$ का मान होगा-

  • [JEE MAIN 2022]
  • A

    $2$

  • B

    $1$

  • C

    $4$

  • D

    $5$

Similar Questions

इन दो कथनों पर विचार करें :

$I$. दो चरों वाले संगत रेखीय समीकरणों $(consistent\,linear\,equations)$ के किसी भी युग्म का अद्वितीय हल है।

$II$. ऐसे दो क्रमागत पूर्णांकों का अस्तित्व नहीं हैं जिनके वर्गों का योग $365$ है।

  • [KVPY 2018]

समीकरण $x^5\left(x^3-x^2-x+1\right)+x\left(3 x^3-4 x^2-2 x+4\right)-1$ $=0$ के भिन्न वास्तविक मूलों की संख्या है $.........$

  • [JEE MAIN 2022]

मान लें कि समीकरण $(1+a+b)^2=3\left(1+a^2+b^2\right)$ में $a$ तथा $b$ वास्तविक संख्याएँ है, तब

  • [KVPY 2016]

यदि $x$ वास्तविक है, तो व्यंजक $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ निम्न अंतराल में समस्त मानों को ग्रहण करता है

  • [IIT 1969]

यदि $x$ धनात्मक है तो $5 + 4x - 4{x^2}$ का अधिकतम मान होगा