मान लें कि $a, b$ अशून्य वास्तविक संख्याएँ हैं तो द्विघात $(quadratic)$ समीकरण $a x^2+(a+b) x+b=0$

के बारे में निम्नलिखित में से कौन से कथन निश्चय ही सत्य हैं?

$(I)$ इसका कम से कम एक शून्यक (root) ऋणात्मक होगा।

$(II)$ इसका कम से कम शक शून्यक धनात्मक होगा।

$(III)$ इसके दोनों शून्यक वास्तविक हैं।

  • [KVPY 2013]
  • A

    केवल $(I)$ और $(II)$

  • B

    केवल $(I)$ और $(III)$

  • C

    केवल $(II)$ और $(III)$

  • D

    सभी

Similar Questions

यदि $a + b + c =1, ab + bc + ca =2$ तथा $abc =3$ हैं, तो $a ^{4}+ b ^{4}+ c ^{4}$ बराबर है ................ |

  • [JEE MAIN 2021]

माना $\alpha, \beta, \gamma$ समीकरण $x^3+b x+c=0$ के तीन मूल हैं। यदि $\beta \gamma=1=-\alpha$, तो $b^3+2 c^3-3 \alpha^3-6 \beta^3-8 \gamma^3$ बराबर है।

  • [JEE MAIN 2023]

समीकरण $x|x|-5|x+2|+6=0$ के वास्तविक मूलों की संख्या है :

  • [JEE MAIN 2023]

यदि $x$ वास्तविक है, तो${x^2} - 8x + 17$ का न्यूनतम मान होगा

यदि $a, b, c, d,-5$ तथा 5 के बीच की वास्तविक संख्याएँ इस प्रकार हैं कि $|a|=\sqrt{4-\sqrt{5-a}}, \quad|b|=\sqrt{4+\sqrt{5-b}}, \quad|c|=\sqrt{4-\sqrt{5+c}},|d|=\sqrt{4+\sqrt{5+a}}$ तब गुणांक $abcd$ क्या होगा ?

  • [KVPY 2017]