मान लें कि $a, b$ अशून्य वास्तविक संख्याएँ हैं तो द्विघात $(quadratic)$ समीकरण $a x^2+(a+b) x+b=0$
के बारे में निम्नलिखित में से कौन से कथन निश्चय ही सत्य हैं?
$(I)$ इसका कम से कम एक शून्यक (root) ऋणात्मक होगा।
$(II)$ इसका कम से कम शक शून्यक धनात्मक होगा।
$(III)$ इसके दोनों शून्यक वास्तविक हैं।
केवल $(I)$ और $(II)$
केवल $(I)$ और $(III)$
केवल $(II)$ और $(III)$
सभी
माना $a$ के धन पूर्णांक मानों, जिन के लिए $\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$ है, का समुच्चय $\mathrm{S}$ है। तो $\mathrm{S}$ में अवयवों की संख्या है।
माना समीकरण $3^{ x }\left(3^{ x }-1\right)+2=\left|3^{ x }-1\right|+\left|3^{ x }-2\right|$ के सभी वास्तविक मूलों का समुच्चय $S$ है। तो $S$
माना समीकरणों $\mathrm{x}^2-12 \mathrm{x}+[\mathrm{x}]+31=0$ तथा $x^2-5|x+2|-4=0$ के वास्तविक मूलों की संख्या $\mathrm{m}$ तथा $\mathrm{n}$ है, जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है। तो $\mathrm{m}^2+\mathrm{mn}+\mathrm{n}^2$ बराबर है_____.
यदि व्यंजक $\left( {mx - 1 + \frac{1}{x}} \right)$ सदैव अऋणात्मक है तब $m$ का न्यूनतम मान होगा
समीकरण $x|x|-5|x+2|+6=0$ के वास्तविक मूलों की संख्या है :