Suppose $a_{1}, a_{2}, \ldots, a_{ n }, \ldots$ be an arithmetic progression of natural numbers. If the ratio of the sum of the first five terms of the sum of first nine terms of the progression is $5: 17$ and $110< a_{15} < 120$ , then the sum of the first ten terms of the progression is equal to -
$290$
$380$
$460$
$510$
Let ${a_1},{a_2},{a_3}, \ldots $ be terms of $A.P.$ If $\frac{{{a_1} + {a_2} + \ldots + {a_p}}}{{{a_1} + {a_2} + \ldots + {a_q}}} = \frac{{{p^2}}}{{{q^2}}},p \ne q$ then $\frac{{{a_6}}}{{{a_{21}}}}$ equals
If the sum of the first $n$ terms of the series $\sqrt 3 + \sqrt {75} + \sqrt {243} + \sqrt {507} + ......$ is $435\sqrt 3 $ , then $n$ equals
The sum of the first $20$ terms common between the series $3 +7 + 1 1 + 15+ ... ......$ and $1 +6+ 11 + 16+ ......$, is
If $a _{1}, a _{2}, a _{3} \ldots$ and $b _{1}, b _{2}, b _{3} \ldots$ are $A.P.$ and $a_{1}=2, a_{10}=3, a_{1} b_{1}=1=a_{10} b_{10}$ then $a_{4} b_{4}$ is equal to
If the $A.M.$ between $p^{th}$ and $q^{th}$ terms of an $A.P.$ is equal to the $A.M.$ between $r^{th}$ and $s^{th}$ terms of the same $A.P.$, then $p + q$ is equal to