If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the $A.M.$ between $a$ and $b,$ then find the value of $n$.
$A.M.$ of $a$ and $b$ $=\frac{a+b}{2}$
According to the given condition,
$\frac{a+b}{2}=\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$
$\Rightarrow(a+b)\left(a^{n-1}+b^{n-1}\right)=2\left(a^{n}+b^{n}\right)$
$\Rightarrow a^{n}+a b^{n-1}+b a^{n-1}+b^{n}=2 a^{n}+2 b^{n}$
$\Rightarrow a b^{n-1}+a^{n-1} b=a^{n}+b^{n}$
$\Rightarrow a b^{n-1}-b^{n}=a^{n}-a^{n-1} b$
$\Rightarrow b^{n-1}(a-b)=a^{n-1}(a-b)$
$\Rightarrow b^{n-1}=a^{n-1}$
$\Rightarrow\left(\frac{a}{b}\right)^{n-1}=1=\left(\frac{a}{b}\right)^{0}$
$\Rightarrow n-1=0$
$\Rightarrow n=1$
If ${n^{th}}$ terms of two $A.P.$'s are $3n + 8$ and $7n + 15$, then the ratio of their ${12^{th}}$ terms will be
If ${S_n}$ denotes the sum of $n$ terms of an arithmetic progression, then the value of $({S_{2n}} - {S_n})$ is equal to
The sum of all natural numbers between $1$ and $100$ which are multiples of $3$ is
Suppose $a_{1}, a_{2}, \ldots, a_{ n }, \ldots$ be an arithmetic progression of natural numbers. If the ratio of the sum of the first five terms of the sum of first nine terms of the progression is $5: 17$ and $110< a_{15} < 120$ , then the sum of the first ten terms of the progression is equal to -
If ${a_1},\;{a_2},\,{a_3},......{a_{24}}$ are in arithmetic progression and ${a_1} + {a_5} + {a_{10}} + {a_{15}} + {a_{20}} + {a_{24}} = 225$, then ${a_1} + {a_2} + {a_3} + ........ + {a_{23}} + {a_{24}} = $