If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the $A.M.$ between $a$ and $b,$ then find the value of $n$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$A.M.$ of $a$ and $b$ $=\frac{a+b}{2}$

According to the given condition,

$\frac{a+b}{2}=\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$

$\Rightarrow(a+b)\left(a^{n-1}+b^{n-1}\right)=2\left(a^{n}+b^{n}\right)$

$\Rightarrow a^{n}+a b^{n-1}+b a^{n-1}+b^{n}=2 a^{n}+2 b^{n}$

$\Rightarrow a b^{n-1}+a^{n-1} b=a^{n}+b^{n}$

$\Rightarrow a b^{n-1}-b^{n}=a^{n}-a^{n-1} b$

$\Rightarrow b^{n-1}(a-b)=a^{n-1}(a-b)$

$\Rightarrow b^{n-1}=a^{n-1}$

$\Rightarrow\left(\frac{a}{b}\right)^{n-1}=1=\left(\frac{a}{b}\right)^{0}$

$\Rightarrow n-1=0$

$\Rightarrow n=1$

Similar Questions

The sum of the first and third term of an arithmetic progression is $12$ and the product of first and second term is $24$, then first term is

Write the first five terms of the sequences whose $n^{t h}$ term is $a_{n}=\frac{n}{n+1}$

If ${a^2},\,{b^2},\,{c^2}$ be in $A.P.$, then $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$ will be in

Let $a_1, a_2, a_3, \ldots$ be an arithmetic progression with $a_1=7$ and common difference $8$ . Let $T_1, T_2, T_3, \ldots$ be such that $T_1=3$ and $T_{n+1}-T_n=a_n$ for $n \geq 1$. Then, which of the following is/are $TRUE$ ?

$(A)$ $T_{20}=1604$

$(B)$ $\sum_{ k =1}^{20} T_{ k }=10510$

$(C)$ $T_{30}=3454$

$(D)$ $\sum_{ k =1}^{30} T_{ k }=35610$

  • [IIT 2022]

If the sum of a certain number of terms of the $A.P.$ $25,22,19, \ldots \ldots .$ is $116$ Find the last term