If $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$ is the $A.M.$ between $a$ and $b,$ then find the value of $n$.
$A.M.$ of $a$ and $b$ $=\frac{a+b}{2}$
According to the given condition,
$\frac{a+b}{2}=\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}$
$\Rightarrow(a+b)\left(a^{n-1}+b^{n-1}\right)=2\left(a^{n}+b^{n}\right)$
$\Rightarrow a^{n}+a b^{n-1}+b a^{n-1}+b^{n}=2 a^{n}+2 b^{n}$
$\Rightarrow a b^{n-1}+a^{n-1} b=a^{n}+b^{n}$
$\Rightarrow a b^{n-1}-b^{n}=a^{n}-a^{n-1} b$
$\Rightarrow b^{n-1}(a-b)=a^{n-1}(a-b)$
$\Rightarrow b^{n-1}=a^{n-1}$
$\Rightarrow\left(\frac{a}{b}\right)^{n-1}=1=\left(\frac{a}{b}\right)^{0}$
$\Rightarrow n-1=0$
$\Rightarrow n=1$
Let $\alpha, \beta$ and $\gamma$ be three positive real numbers. Let $f ( x )=\alpha x ^{5}+\beta x ^{3}+\gamma x , x \in R \quad$ and $\quad g : R \rightarrow R$ be such that $g(f(x))=x$ for all $x \in R$. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)\right)\right)$ is equal to.
If $\frac{{3 + 5 + 7 + ..........{\rm{to}}\;n\;{\rm{terms}}}}{{5 + 8 + 11 + .........{\rm{to}}\;10\;{\rm{terms}}}} = 7$, then the value of $n$ is
Find the $17^{\text {th }}$ and $24^{\text {th }}$ term in the following sequence whose $n^{\text {th }}$ term is $a_{n}=4 n-3$
If ${S_1},\;{S_2},\;{S_3},...........{S_m}$ are the sums of $n$ terms of $m$ $A.P.'s$ whose first terms are $1,\;2,\;3,\;...............,m$ and common differences are $1,\;3,\;5,\;...........2m - 1$ respectively, then ${S_1} + {S_2} + {S_3} + .......{S_m} = $
Suppose $a_{1}, a_{2}, \ldots, a_{ n }, \ldots$ be an arithmetic progression of natural numbers. If the ratio of the sum of the first five terms of the sum of first nine terms of the progression is $5: 17$ and $110< a_{15} < 120$ , then the sum of the first ten terms of the progression is equal to -