ધારો કે $X=\{11,12,13, \ldots, 40,41\}$ અને $Y=\{61,62,63, \ldots, 90,91\}$ એ અવલોકનોના બે ગણ છે. જો $\bar{x}$ અને $\bar{y}$ અનુક્રમે તેમના મધ્યક હોય તથા $X \cup Y$ માં ના તમામ અવલોકનો નું વિચરણ $\sigma^2$ હોય, તો $\left|\bar{x}+\bar{y}-\sigma^2\right|=...............$

  • [JEE MAIN 2023]
  • A

    $603$

  • B

    $604$

  • C

    $605$

  • D

    $606$

Similar Questions

જો $n$ અવલોકનો $x_1, x_2,.....x_n$ એવા છે કે જેથી $\sum\limits_{i = 1}^n {x_i^2}  = 400$ અને $\sum\limits_{i = 1}^n {{x_i}}  = 100$ થાય તો નીચેનામાંથી $n$ ની શકય કિમત મેળવો. 

$2n$  અવલોકનનો વાળી શ્રેણીમાં તે પૈકી અડધા અવલોકનો $a$ બરાબર અને બાકીના $-a $ છે. જો અવલોકનોનું પ્રમાણિત વિચલન $2$  હોય તો $| a | $ બરાબર શું થાય ?

અહી $\mathrm{X}$ એ વિતરણનું યાર્દચ્છિક ચલ છે.

$\mathrm{x}$ $-2$ $-1$ $3$ $4$ $6$
$\mathrm{P}(\mathrm{X}=\mathrm{x})$ $\frac{1}{5}$ $\mathrm{a}$ $\frac{1}{3}$ $\frac{1}{5}$ $\mathrm{~b}$

જો મધ્યક $X$ એ  $2.3$ અને $X$ નું વિચરણ $\sigma^{2}$ હોય તો $100 \sigma^{2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

અહી $\mathrm{n}$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે કે જેથી  $1,2,3,4, \ldots, \mathrm{n}$ નું વિચરણ  $14 $ થાય છે તો $\mathrm{n}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

વર્ગના $100$  વિર્ધાર્થીંઓના ગણિતના ગુણનો મધ્યક $72$ છે. જો છોકરાઓની સંખ્યા $70 $ હોય અને તેમના ગુણનો મધ્યક $75$  હોય તો વર્ગમાં છોકરીઓનાં ગુણનો મધ્યક શોધો ?