- Home
- Standard 11
- Mathematics
ધારોકે $S$ અને $a_1$ ના તમામ મૂલ્યોનો એવો ગણ છે કે જેના માટે $100$ ક્રમિક ધન પૂર્ણાંકો $a_1, a_2, a_3, \ldots, a_{100}$ નું મધ્યક સાપેક્ષ સરેરાશ વિચલન $25$ છે. તો $S$ એ $............$ છે.
$\phi$
$\{99\}$
$N$
$\{9\}$
Solution
let $a_1$ be any natural number
$a_1, a_1+1, a_1+2, \ldots ., a_1+99 \text { are values of } a_i ' S$
$\bar{x}=\frac{a_1+\left(a_1+1\right)+\left(a_1+2\right)+\ldots . .+a_1+99}{100}$
$=\frac{100 a_1+(1+2+\ldots . .+99)}{100}=a_1+\frac{99 \times 100}{2 \times 100}$
$=a_1+\frac{99}{2}$
$\text { Mean deviation about mean }=\frac{\sum \limits_{i=1}^{100}\left|x_i-\bar{x}\right|}{100}$
$=\frac{2\left(\frac{99}{2}+\frac{97}{2}+\frac{95}{2}+\ldots .+\frac{1}{2}\right)}{100}$
$=\frac{1+3+\ldots .+99}{100}$
$=\frac{\frac{50}{2}[1+99]}{100}$
$=25$
So, it is true for every natural no. ' $a_1{ }^{\prime}$
Similar Questions
નીચે આપેલ આવૃત્તિ-વિતરણ માટે મધ્યક, વિચરણ અને પ્રમાણિત વિચલન શોધો.
વર્ગ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
આવૃત્તિ |
$3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |