13.Statistics
hard

ધારોકે $S$ અને $a_1$ ના તમામ મૂલ્યોનો એવો ગણ છે કે જેના માટે $100$ ક્રમિક ધન પૂર્ણાંકો $a_1, a_2, a_3, \ldots, a_{100}$ નું મધ્યક સાપેક્ષ સરેરાશ વિચલન $25$ છે. તો $S$ એ $............$ છે.

A

$\phi$

B

$\{99\}$

C

$N$

D

$\{9\}$

(JEE MAIN-2023)

Solution

let $a_1$ be any natural number

$a_1, a_1+1, a_1+2, \ldots ., a_1+99 \text { are values of } a_i ' S$

$\bar{x}=\frac{a_1+\left(a_1+1\right)+\left(a_1+2\right)+\ldots . .+a_1+99}{100}$

$=\frac{100 a_1+(1+2+\ldots . .+99)}{100}=a_1+\frac{99 \times 100}{2 \times 100}$

$=a_1+\frac{99}{2}$

$\text { Mean deviation about mean }=\frac{\sum \limits_{i=1}^{100}\left|x_i-\bar{x}\right|}{100}$

$=\frac{2\left(\frac{99}{2}+\frac{97}{2}+\frac{95}{2}+\ldots .+\frac{1}{2}\right)}{100}$

$=\frac{1+3+\ldots .+99}{100}$

$=\frac{\frac{50}{2}[1+99]}{100}$

$=25$

So, it is true for every natural no. ' $a_1{ }^{\prime}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.