Let $A=\{1,2,3,5,8,9\}$. Then the number of possible functions $f : A \rightarrow A$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $m, n \in A$ with $m \cdot n \in A$ is equal to $...............$.

  • [JEE MAIN 2023]
  • A

    $431$

  • B

    $432$

  • C

    $430$

  • D

    $894$

Similar Questions

Let $f(x) = {\cos ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) + {\sin ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ then the value of $f(1) + f(2)$, is -

Domain of the definition of function 

$f(x) = \sqrt {\frac{{4 - {x^2}}}{{\left[ x \right] + 2}}} $ is      $($ where $[.] \rightarrow G.I.F.)$

If $f(x)$ is a function satisfying $f(x + y) = f(x)f(y)$ for all $x,\;y \in N$ such that $f(1) = 3$ and $\sum\limits_{x = 1}^n {f(x) = 120} $. Then the value of $n$ is

  • [IIT 1992]

The domain of $f(x) = [\sin x] \cos \left( {\frac{\pi }{{[x - 1]}}} \right)$ is (where $[.]$ denotes $G.I.F.$)

The range of the function $f(x){ = ^{7 - x}}{\kern 1pt} {P_{x - 3}}$ is

  • [AIEEE 2004]