Let $A=\{1,2,3,5,8,9\}$. Then the number of possible functions $f : A \rightarrow A$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $m, n \in A$ with $m \cdot n \in A$ is equal to $...............$.

  • [JEE MAIN 2023]
  • A

    $431$

  • B

    $432$

  • C

    $430$

  • D

    $894$

Similar Questions

If $y = 3[x] + 1 = 4[x -1] -10$, then $[x + 2y]$ is equal to (where $[.]$ is $G.I.F.$)

Show that the function $f: R \rightarrow R$ defined as $f(x)=x^{2},$ is neither one-one nor onto.

If $f(x)$ satisfies $f(7 -x) = f(7 + x)\ \forall \,x\, \in \,R$ such that $f(x)$ has exactly $5$ real roots which are all distinct such that sum of the real roots is $S$ then $S/7$ is equal to

If $f(x) = \frac{{\alpha x}}{{x + 1}},x \ne - 1$, for what value of $\alpha $ is $f(f(x)) = x$

Let $f: R \rightarrow R$ be a function defined by $f(x)=(2+3 a) x^2+\left(\frac{a+2}{a-1}\right) x+b, a \neq 1$. If $f(x+y)=f(x)+f(y)+1-\frac{2}{7} x y$, then the value of $28 \sum_{i=1}^3|f(i)|$ is:

  • [JEE MAIN 2025]