माना $\mathrm{A}=\{1,2,3,5,8,9\}$ है। तब संभव फलनों $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ की संख्या ताकि प्रत्येक $\mathrm{m}, \mathrm{n} \in \mathrm{A}$ के लिये $\mathrm{f}(\mathrm{m} \cdot \mathrm{n})=\mathrm{f}(\mathrm{m}) \cdot \mathrm{f}(\mathrm{n})$ है जिसमें $\mathrm{m} \cdot \mathrm{n} \in \mathrm{A}$ है, होगी_____________.

  • [JEE MAIN 2023]
  • A

    $431$

  • B

    $432$

  • C

    $430$

  • D

    $894$

Similar Questions

यदि $R=\left\{(x, y): x, y \in Z , x^{2}+3 y^{2} \leq 8\right\}$ पूर्णांक $Z$ के समुच्चय का संबंध है तो $R^{-1}$ का प्रक्षेत्र है

  • [JEE MAIN 2020]

यदि फलन $f(x)=\log _e\left(4 x^2+11 x+6\right)+$ $\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ का प्रांत $(\alpha, \beta]$ है, तो $36|\alpha+\beta|$ बराबर है :

  • [JEE MAIN 2023]

फलन $f(x) = \cos (x/3)$ का परिसर (रेंज) है

फलन $y = f(x)$ का ग्राफ रेखा $x = 2$ के परित: सममित है, तब

  • [AIEEE 2004]

इस प्रश्न में सभी वास्तविक संख्याओं का समुच्चय $R$ द्वारा निर्देशित किया गया है। मान लीजिये कि प्रत्येक $x \in R$ के लिए फलन $f$ इस प्रकार है कि $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$. इस स्थिति में $2 f(0)+3 f(1)$ का मान होगा :

  • [KVPY 2014]