1.Relation and Function
medium

माना $\mathrm{A}=\{1,2,3,5,8,9\}$ है। तब संभव फलनों $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{A}$ की संख्या ताकि प्रत्येक $\mathrm{m}, \mathrm{n} \in \mathrm{A}$ के लिये $\mathrm{f}(\mathrm{m} \cdot \mathrm{n})=\mathrm{f}(\mathrm{m}) \cdot \mathrm{f}(\mathrm{n})$ है जिसमें $\mathrm{m} \cdot \mathrm{n} \in \mathrm{A}$ है, होगी_____________.

A

$431$

B

$432$

C

$430$

D

$894$

(JEE MAIN-2023)

Solution

$f (1)=1 ; f (9)= f (3) \times f (3)$

i.e., $f(3)=1$ or $3$

Total function $=1 \times 6 \times 2 \times 6 \times 6 \times 1=432$

Standard 12
Mathematics

Similar Questions

माना कि $E_1=\left\{x \in R : x \neq 1\right.$ और $\left.\frac{x}{x-1}>0\right\}$

और $E_2=\left\{x \in E_1: \sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)\right.$ एक वास्तविक संख्या (real number) है $\}$

(यहाँ प्रतिलोम त्रिकोणमितीय फलन (inverse trigonometric function) $\sin ^{-1} x,\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ में मान धारण करता है।)

माना कि फलन $f: E_1 \rightarrow R , f(x)=\log _e\left(\frac{x}{x-1}\right)$ के द्वारा परिभाषित है

और फलन $g: E_2 \rightarrow R , g(x)=\sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)$ के द्वारा परिभाषित है।

सूची $I$ सूची $II$
$P$ $f$ का परिसर (range) है $1$ $\left(-\infty, \frac{1}{1- e }\right] \cup\left[\frac{ e }{ e -1}, \infty\right)$
$Q$ $g$ के परिसर में समाहित (contained) है $2$ $(0,1)$
$R$ $f$ के प्रान्त (domain) में समाहित है $3$ $\left[-\frac{1}{2}, \frac{1}{2}\right]$
$S$ $g$ का प्रान्त है $4$ $(-\infty, 0) \cup(0, \infty)$
  $5$ $\left(-\infty, \frac{ e }{ e -1}\right]$
  $6$ $(-\infty, 0) \cup\left(\frac{1}{2}, \frac{ e }{ e -1}\right]$

दिए हुए विकल्पों मे से सही विकल्प है:

medium
(IIT-2018)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.