ધારોકે $A=\{1,2,3,5,8,9\}$, તો $f: A \rightarrow A$ હોય તેવા પ્રત્યેક $f(m \cdot n)=f(m) \cdot f(n)$ માટે $m, n \in A$ થાય તેવા શક્ય વિધેયો $m \cdot n \in A$ ની સંખ્યા $..........$ છે.
$431$
$432$
$430$
$894$
ધારોકે $f$ એ પ્રત્યેક $f(x+y)=f(x)+f(y)$ માટે $x, y \in N$ અને $f(1)=\frac{1}{5}$ નું સમાધાન કરતુ વિધેય છે. જો $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$ હોય, તો $m=..........$
જો $f(x) = \cos (\log x)$, તો $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right] =$
ધારોકે $f(x)=2 x^{2}-x-1$ અને $S =\{n \in Z :|f(n)| \leq 800\}$ છે, તો $\sum_{n \in S} f(n)$ નું મૂલ્ય ............ છે.
જો $f(x) = \frac{2x^2-14x^2-8x+49}{x^4-7x^2-4x+23}$ નો વિસ્તારગણ ($a, b$] હોય તો ($a +b$) ની કિમત ........ મળે.
વિધેય $f:\left[ { - 1,1} \right] \to R$ જ્યા $f(x) = {\alpha _1}{\sin ^{ - 1}}x + {\alpha _3}\left( {{{\sin }^{ - 1}}{x^3}} \right) + ..... + {\alpha _{(2n + 1)}}{({\sin ^{ - 1}}x)^{(2n + 1)}} - {\cot ^{ - 1}}x$ ધ્યાનમા લ્યો. જ્યા $\alpha _i\ 's$ એ ધન અચળ હોય અને $n \in N < 100$ હોય તો $f(x)$ એ .................. વિધેય છે.