ધારો કે $a_1, a_2, \ldots, a_n$ સમાંતર શ્રેણીમાં છ. જો $a_5=2 a_7$ અને $a_{11}=18$ હોય, તો $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)=................$

  • [JEE MAIN 2023]
  • A

    $8$

  • B

    $6$

  • C

    $3$

  • D

    $12$

Similar Questions

ગણ $\{\alpha \in\{1,2, \ldots, 100\}$ ગુ.સા.અ.$(\alpha, 24)=1\}$ ના તમામ ધટકોનો સરવાળો

  • [JEE MAIN 2022]

એક વ્યક્તિના પ્રથમ વર્ષની આવક $Rs. \,3,00,000$ છે. તેની આવકમાં પછીનાં $19$ વર્ષ સુધી પ્રતિ વર્ષ $Rs.\,10,000$ નો વધારો થાય છે. તો તે $20$ વર્ષમાં કુલ કેટલી રકમ મેળવશે ? 

જો $a, b, c$ સમાંતર શ્રેણીમાં હોય, તો $(a - c)^2 = ……$

જો કોઈ સમાંતર શ્રેણીના પ્રથમ $n$ પદોનો સરવાળો $cn(n -1)$ , જ્યાં $c \neq 0$ , હોય તો આ પદોના વર્ગોનો સરવાળો મેળવો 

શ્રેણી $a_{n}=(n-1)(2-n)(3+n)$ નું $20$ મું પદ કર્યું હશે ?