જો $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, જ્યાં $a , b , c$ એ સમાંતર શ્રેણી$(A.P.)$ માં છે. $|a| < 1,|b| < 1,|c| < 1$, $abc$ $\neq 0$ તો:
$x, y, z$ એ $A.P.$ મા છે.
$\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ એ $A.P.$માં છે.
$x, y, z$ એ $G.P.$મા છે.
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1-(a+b+c)$
અચળ $P$ અને $Q$ માટે સમાંતર શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો $n P+\frac{1}{2} n(n-1) Q$ છે. તો સામાન્ય તફાવત શોધો.
એક બહુકોણમાં બે ક્રમિક અંતઃકોણોનો તફાવત $5^{\circ}$ છે. જો સૌથી નાનો ખૂણો $120^{\circ}$ નો હોય, તો તે બહુકોણની બાજુઓની સંખ્યા શોધો.
જો સમીકરણ $a{x^2} + bx + c = 0$ ના બીજનો સરવાળો એ બીજના વર્ગના વ્યસ્તના સરવાળા બરાબર હોય તો $b{c^2},\;c{a^2},\;a{b^2}$ એ . . . . શ્રેણીમાં છે .
$1$ થી $2001$ સુધીના અયુગ્મ પૂર્ણાકોનો સરવાળો શોધો.
શ્રેણીઓ $4,9,14,19, \ldots . . .25$ માં પદ સુધી તથા $3,6,9,12, \ldots . . .37$ માં પદ સુધીના સામાન્ય પદોની સંખ્યા . . . . . .. છે.