જો $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, જ્યાં $a , b , c$ એ સમાંતર શ્રેણી$(A.P.)$ માં છે. $|a| < 1,|b| < 1,|c| < 1$, $abc$ $\neq 0$ તો:
$x, y, z$ એ $A.P.$ મા છે.
$\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ એ $A.P.$માં છે.
$x, y, z$ એ $G.P.$મા છે.
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1-(a+b+c)$
જો સમાંતર શ્રેણી નું $m$ મું પદ $1/n$ અને $n$ મું પદ $1/m$ હોય તો $mn$ પદોનો સરવાળો ......થાય.
એક વ્યક્તિના પ્રથમ વર્ષની આવક $Rs. \,3,00,000$ છે. તેની આવકમાં પછીનાં $19$ વર્ષ સુધી પ્રતિ વર્ષ $Rs.\,10,000$ નો વધારો થાય છે. તો તે $20$ વર્ષમાં કુલ કેટલી રકમ મેળવશે ?
અહી $S_{1}$ એ સમાંતર શ્રેણીના પ્રથમ $2 n$ નો સરવાળો દર્શાવે છે અને $S_{2}$ તે જ સમાંતર શ્રેણીના પ્રથમ $4n$ નો સરવાળો દર્શાવે છે. જો $\left( S _{2}- S _{1}\right) =1000$ હોયતો પ્રથમ $6 n$ પદોનો સરવાળો મેળવો.
ધારો કે $3,7,11,15, \ldots, 403$ અને $2, 5, 8, 11, .,. 404$ એ બે સમાંતર શ્રેણીઓ છે. તો તેમાંના સામાન્ય પદોનો સરવાળો...................... છે.
સમાંતર શ્રેણીમાં ત્રણ સંખ્યાઓ છે જેમનો સરવાળો $33$ અને ગુણાકાર $792$ થાય છે, તો આ સંખ્યામાંથી નાનામાં નાની સંખ્યા કઈ હશે ?