જો સમાંતર શ્રેણીમાં આવેલી ત્રણ સંખ્યાઓનો સરવાળો $24$ અને તેમનો ગુણાકાર $440$ હોય તો આ સંખ્યાઓ શોધો.
Let the three numbers in $A.P.$ be $a-d, a,$ and $a+d$
According to the given information,
$(a-d)+(a)+(a+d)=24$ .........$(1)$
$\Rightarrow 3 a=24$
$\therefore a=8$
$(a-d) a(a+d)=440$ .........$(2)$
$\Rightarrow(8-d)(8)(8+d)=440$
$\Rightarrow(8-d)(8+d)=55$
$\Rightarrow 64-d^{2}=55$
$\Rightarrow d^{2}=64-55=9$
$\Rightarrow d^{2}=\pm 3$
Therefore, when $d=3,$ the numbers are $5,8$ and $11$ and when $d=-3,$ the numbers are $11,8$ and $5$
Thus, the three numbers are $5,8$ and $11 .$
સમગુણોત્તર શ્રેણીના કેટલાક પદોનો સરવાળો $728$ છે, જો સામાન્ય ગુણોત્તર $3$ હોય અને છેલ્લું પદ $486$ તો શ્રેણીનું પહેલું પદ શું હોય?
$a$ અને $b$ બે સંખ્યાઓ છે. $A$ સમાંતર મધ્યક અને $S$ એ $a $ અને $b$ વચ્ચેના $n$ સમાંતર મધ્યકોનો સરવાળો દર્શાવે તો $S/A$ કોના ઉપર આધાર રાખે છે ?
જો $S_n$ અને $s_n$ એ $n$ પદો ધરાવતી બે ભિન્ન સમાંતર શ્રેણી છે કે જેના માટે $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ હોય તો $\frac{{{s_n}}}{{{S_{2n}}}}$ ની કિમત મેળવો
આપેલ શ્રેણીનાં પ્રથમ પાંચ પદ શોધો અને સંબંધિત શ્રેઢી મેળવો : $a_{1}=-1, a_{n}=\frac{a_{n-1}}{n},$ માટે $n\, \geq\, 2$
એક સમાંતર શ્રેણીના $11$ માં પદના બમણા એ તેના $21$ માં પદના સાત ગણા જેટલા હોય, તો તેનું $25$ મું પદ ....... છે.