જો સમાંતર શ્રેણીમાં આવેલી ત્રણ સંખ્યાઓનો સરવાળો $24$ અને તેમનો ગુણાકાર $440$ હોય તો આ સંખ્યાઓ શોધો.
Let the three numbers in $A.P.$ be $a-d, a,$ and $a+d$
According to the given information,
$(a-d)+(a)+(a+d)=24$ .........$(1)$
$\Rightarrow 3 a=24$
$\therefore a=8$
$(a-d) a(a+d)=440$ .........$(2)$
$\Rightarrow(8-d)(8)(8+d)=440$
$\Rightarrow(8-d)(8+d)=55$
$\Rightarrow 64-d^{2}=55$
$\Rightarrow d^{2}=64-55=9$
$\Rightarrow d^{2}=\pm 3$
Therefore, when $d=3,$ the numbers are $5,8$ and $11$ and when $d=-3,$ the numbers are $11,8$ and $5$
Thus, the three numbers are $5,8$ and $11 .$
જો $a_1, a_2, .. a_{24}$ સમાંતર શ્રેણીમાં હોય અને $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$ થાય, તો આ સમાંતર શ્રેણીના $24$ પદોનો સરવાળો કેટલો થાય ?
શ્રેણી $a_{n}=(n-1)(2-n)(3+n)$ નું $20$ મું પદ કર્યું હશે ?
$m \neq n$ માટે કોઈક સમાંતર શ્રેણીનું $m$ મું પદ $n$ અને $n$ મું પદ $m$ હોય, તો તેનું $p$ મું પદ શોધો.
જો $a_1 , a_2, a_3, .... , a_n$ એ સમાંતર શ્રેણીમાં હોય અને જો $a_3 + a_7 + a_{11} + a_{15} = 72$ ,તો પ્રથમ $17$ પદનો સરવાળો મેળવો.
અહી $a_1=8, a_2, a_3, \ldots a_n$ એ સમાંતર શ્રેણી માં છે . જો પ્રથમ ચાર પદોનો સરવાળો $50$ અને અંતિમ ચાર પદોનો સરવાળો $170$ હોય તો મધ્યના બે પદોનો ગુણાકાર મેળવો.