- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
easy
The directrix of the hyperbola is $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1$
A
$x = 9/\sqrt {13} $
B
$y = 9/\sqrt {13} $
C
$x = 6/\sqrt {13} $
D
$y = 6/\sqrt {13} $
Solution
(a) Directrix of hyperbola $x = \frac{a}{e}$,
where $e = \sqrt {\frac{{{b^2} + {a^2}}}{{{a^2}}}} = \frac{{\sqrt {{b^2} + {a^2}} }}{a}$
Directrix is, $x = \frac{{{a^2}}}{{\sqrt {{a^2} + {b^2}} }} = \frac{9}{{\sqrt {9 + 4} }}$
==> $x = 9/\sqrt {13} $
Standard 11
Mathematics