The directrix of the hyperbola is $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{4} = 1$
$x = 9/\sqrt {13} $
$y = 9/\sqrt {13} $
$x = 6/\sqrt {13} $
$y = 6/\sqrt {13} $
Let $\mathrm{P}$ be a point on the hyperbola $\mathrm{H}: \frac{\mathrm{x}^2}{9}-\frac{\mathrm{y}^2}{4}=1$, in the first quadrant such that the area of triangle formed by $\mathrm{P}$ and the two foci of $\mathrm{H}$ is $2 \sqrt{13}$. Then, the square of the distance of $\mathrm{P}$ from the origin is
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola $5 y^{2}-9 x^{2}=36$
If a circle cuts a rectangular hyperbola $xy = {c^2}$ in $A, B, C, D$ and the parameters of these four points be ${t_1},\;{t_2},\;{t_3}$ and ${t_4}$ respectively. Then
What will be equation of that chord of hyperbola $25{x^2} - 16{y^2} = 400$, whose mid point is $(5, 3)$
For the hyperbola $H : x ^{2}- y ^{2}=1$ and the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b>0$, let the
$(1)$ eccentricity of $E$ be reciprocal of the eccentricity of $H$, and
$(2)$ the line $y=\sqrt{\frac{5}{2}} x+K$ be a common tangent of $E$ and $H$ Then $4\left(a^{2}+b^{2}\right)$ is equal to