4-2.Quadratic Equations and Inequations
hard

Let $\mathrm{S}=\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$. Then the number of elements in $\mathrm{S}$ is :

A

$4$

B

$0$

C

$2$

D

$1$

(JEE MAIN-2024)

Solution

$(\sqrt{3}+\sqrt{2})^{\mathrm{x}}+(\sqrt{3}-\sqrt{2})^{\mathrm{x}}=10$

$\text { Let }(\sqrt{3}+\sqrt{2})^{\mathrm{x}}=\mathrm{t}$

$\mathrm{t}+\frac{1}{\mathrm{t}}=10$

$\mathrm{t}^2-10 \mathrm{t}+1=0$

$\mathrm{t}=\frac{10 \pm \sqrt{100-4}}{2}=5 \pm 2 \sqrt{6}$

$(\sqrt{3}+\sqrt{2})^{\mathrm{x}}=(\sqrt{3} \pm \sqrt{2})^2$

$\mathrm{x}=2 \text { or } \mathrm{x}=-2$

$\text { Number of solutions }=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.