Let $\mathrm{S}$ be the set of positive integral values of $a$ for which $\frac{\mathrm{ax}^2+2(\mathrm{a}+1) \mathrm{x}+9 \mathrm{a}+4}{\mathrm{x}^2-8 \mathrm{x}+32}<0, \forall \mathrm{x} \in \mathbb{R}$. Then, the number of elements in $\mathrm{S}$ is :

  • [JEE MAIN 2024]
  • A

    $1$

  • B

    $0$

  • C

    $\infty$

  • D

    $3$

Similar Questions

If $|x - 2| + |x - 3| = 7$, then $x =$

If two roots of the equation ${x^3} - 3x + 2 = 0$ are same, then the roots will be

If $\alpha $, $\beta$, $\gamma$  are roots of ${x^3} - 2{x^2} + 3x - 2 = 0$ , then the value of$\left( {\frac{{\alpha \beta }}{{\alpha  + \beta }} + \frac{{\alpha \gamma }}{{\alpha  + \gamma }} + \frac{{\beta \gamma }}{{\beta  + \gamma }}} \right)$ is

Let $a, b, c$ be non-zero real numbers such that $a+b+c=0$, let $q=a^2+b^2+c^2$ and $r=a^4+b^4+c^4$. Then,

  • [KVPY 2014]

The real roots of the equation ${x^2} + 5|x| + \,\,4 = 0$ are