माना $\mathrm{x}_1, \mathrm{x}_2 \ldots, \mathrm{x}_{100}$ एक समांतर श्रेणी में हैं, जिनका माध्य 200 है तथा $x_1=2$ है। यदि $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$ हैं, तो $\mathrm{y}_1, \mathrm{y}_2, \ldots \ldots, \mathrm{y}_{100}$ का माध्य है

  • [JEE MAIN 2023]
  • A

    $10101.50$

  • B

    $10051.50$

  • C

    $10049.50$

  • D

    $10100$

Similar Questions

यदि ${S_k}$ किसी समान्तर श्रेणी के $k$ पदों का योगफल है जिसके प्रथम पद एवं सार्वअन्तर क्रमश: $‘a’$ व $‘d’$ हैं, तो $\frac{{{S_{kn}}}}{{{S_n}}}$,$n$ से स्वतंत्र होगा यदि

श्रेणियों $ S_1=3+7+11+15+19+\ldots \ldots $ $ S_2=1+6+11+16+21+\ldots $ का $8$ वाँ उभयनिष्ठ पद है।

  • [JEE MAIN 2023]

यदि $a,\;b,\;c,\;d,\;e,\;f$ समान्तर श्रेणी में हों, तो $e - c$ का मान होगा

दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको $4$ से विभजित करने पर शेषफल $1$ हो।

माना $\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{ n }}(i=1,2, \ldots, n$ के लिए $x_{i} \neq 0$ है) समांतर श्रेढ़ी में ऐसे हैं कि $x_{1}=4$ तथा $x_{21}=20$ है। यदि $n$ का न्यूनतम धनपूर्णांक मान जिसके लिए $x_{ n } >50$ है, तो $\sum_{i=1}^{ n }\left(\frac{1}{x_{i}}\right)$ बराबर है

  • [JEE MAIN 2018]