माना $\mathrm{A}=\{1,2,3,4\}$ है तथा $\mathrm{A} \times \mathrm{A}$ पर एक संबंध $\mathrm{R}$ निम्न प्रकार परिभाषित है
$6$
$5$
$4$
$3$
मान लीजिए कि समुच्चय $\{1,2,3,4\}$ में, $R =\{(1,2),(2,2),(1,1),(4,4),$ $(1,3),(3,3),(3,2)\}$ द्वारा परिभाषित संबंध $R$ है। निम्नलिखित में से सही उत्तर चुनिए।
संबंध "सर्वागसम मापांक $m$" है
माना $ R$ समुच्चय $A$ पर संबंध इस प्रकार है कि $R = {R^{ - 1}}$ तब $R $ है
मान लीजिए कि समुच्चय $A =\{1,2,3,4,5,6,7\}$ में $R =\{(a, b): a$ तथा $b$ दोनों ही या तो विषम हैं या सम हैं$\}$ द्वारा परिभाषित एक संबंध है। सिद्ध कीजिए कि $R$ एक तुल्यता संबंध है।
साथ ही सिद्ध कीजिए कि उपसमुच्चय $\{1,3,5,7\}$ के सभी अवयव एक दूसरे से संबंधित है, और उपसमुच्चय $\{2,4,6\}$ के सभी अवयव एक दूसरे से संबंधित है, परंतु उपसमुच्चय $\{1,3,5,7\}$ का कोई भी अवयव उपसमुच्चय $\{2,4,6\}$ के किसी भी अवयव से संबंधित नहीं है।
यदि $R \subset A \times B$ तथा $S \subset B \times C\,$ है, तो संबंध ${(SoR)^{ - 1}} = $