Let $A$ and $B$ be two sets then $(A \cup B)' \cup (A' \cap B)$ is equal to
$A'$
$A$
$B'$
None of these
Taking the set of natural numbers as the universal set, write down the complements of the following sets:
$\{ x:x$ is an even natural number $\} $
Let $\mathrm{U}$ be universal set of all the students of Class $\mathrm{XI}$ of a coeducational school and $\mathrm{A}$ be the set of all girls in Class $\mathrm{XI}$. Find $\mathrm{A}'.$
Draw appropriate Venn diagram for each of the following:
$A^{\prime} \cup B^{\prime}$
If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
Fill in the blanks to make each of the following a true statement :
$\varnothing^ {\prime}\cap A$