Let $U$ be the universal set and $A \cup B \cup C = U$. Then $\{ (A - B) \cup (B - C) \cup (C - A)\} '$ is equal to
$A \cup B \cup C$
$A \cup (B \cap C)$
$A \cap B \cap C$
$A \cap (B \cup C)$
Which of the following statement is false (where $A$ $\&$ $B$ are two non empty sets)
Draw appropriate Venn diagram for each of the following:
$A^{\prime} \cup B^{\prime}$
If $U =\{1,2,3,4,5,6,7,8,9\}, A =\{2,4,6,8\}$ and $B =\{2,3,5,7\} .$ Verify that
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
If $U=\{a, b, c, d, e, f, g, h\},$ find the complements of the following sets:
$D=\{f, g, h, a\}$
Let $U = \{ 1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9,\,10\} $, $A = \{ 1,\,2,\,5\} ,\,B = \{ 6,\,7\} $, then $A \cap B'$ is