સંબંધ $R$ એ $N$ પર “$aRb \Leftrightarrow b$ એ $a$ વડે વિભાજય છે.”દ્વારા વ્યાખ્યાયિત હોય તો સંબંધએ . . . .
સ્વવાચક છે પરંતુ સંમિત નથી.
સંમિત છે પરંતુ પરંપરિત નથી.
સંમિત અને પરંપરિત છે.
એકપણ નહીં.
જો $N$ પ્રાકૃતિક સંખ્યાનો ગણ છે . બે $N$ પરના સંબંધ $R_1 = \{(x,y) \in N \times N : 2x + y= 10\}$ અને $R_2 = \{(x,y) \in N\times N : x+ 2y= 10\} $ આપેલ છે તો . . .
વાસ્તવિક સંખ્યા $x$ અને $y$ માટે જો $ xRy \in $ $x - y + \sqrt 2 $ એ અંસમેય સંખ્યા હોય તો સંબંધ $R$ એ . . . .
ગણ $\{1,2,3,4\}$ પરના સ્વવાચક ન હોય તેવા સંમિત સંબંધોની સંખ્યા ........................છે.
જો સંબંધ $R$ એ ગણ $N$ પરએ રીતે વ્યાખ્યીત છે કે જેથી $\{(x, y)| x, y \in N, 2x + y = 41\}$. તો $R$ એ . . .
જો સંબંધ $R$ એ $A$ થી $B$ અને સંબંધ $S$ એ $B$ થી $C$ પર વ્યાખ્યાયિત હોય તો,સંબંધ $SoR$ એ . . .