જો $A = \{a, b, c\}$ અને $B = \{1, 2\}$. સંબંધ $R$ એ ગણ $A$ થી ગણ $B$ પર વ્યાખ્યાયિત હોય તો $R$ એ . . . . સમાન થશે.
$A$
$B$
$A × B$
$B × A$
(c) $R = A \times B$.
જો $n(A) = m$ હોય તો ગણ $A$ પરના બધા સ્વવાચક સંબંધોની સંખ્યાઓ મેળવો.
The સંબંધ "congruence modulo $m$" is
જો સંબંધ $R = \{(a, a)\}$ એ ગણ $A$ પરનો સંબંધ હોય તો $R$ એ .. . .
જો $R\,= \{(x,y) : x,y \in N\, and\, x^2 -4xy +3y^2\, =0\}$, કે જ્યાં $N$ એ પ્રાકૃતિક સંખ્યાનો ગણ હોય તો $R$ એ .. .
જો $A=\{1,2,3, \ldots . . . .100\}$. જો $R$ એ સંબંધ $A$ પર છે. તથા $(x, y) \in R$ થી વ્યાખાયિત છે, જો અને તો જ $2 x=3 y$. જો $R_1$ એ $A$ પર સંમિત સંબંધ હોય તો $R \subset$ $R_1$ અને $R_1$ ના ઘટકોની સંખ્યા $n$ છે. તો $n$ ની ન્યુનત્તમ કિંમત મેળવો.
Confusing about what to choose? Our team will schedule a demo shortly.