જો સંબંધ $R = \{(a, a)\}$ એ ગણ $A$ પરનો સંબંધ હોય તો $R$ એ .. . .
સંમિત
વિસંમિત
સંમિત અને વિસંમિત
સંમિત કે વિસંમિત નથી
(c) It is obvious.
જે સંમિત હોય પરંતુ સ્વવાચક કે પરંપરિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો
સંબંધ $R$ એ $\{2, 3, 4, 5\}$ થી $\{3, 6, 7, 10\}$ પર “$xRy \Leftrightarrow x$ એ $y$ ની સાપેક્ષે અવિભાજય છે “ દ્વારા વ્યાખ્યાયિત હોય તો $R$ નો પ્રદેશ મેળવો.
જો $A = \{a, b, c\}$ અને $B = \{1, 2\}$. સંબંધ $R$ એ ગણ $A$ થી ગણ $B$ પર વ્યાખ્યાયિત હોય તો $R$ એ . . . . સમાન થશે.
નીચે આપલે પૈકી ક્યો સંબંધ $\mathrm{R}$ એ વાસ્તવિક સંખ્યા પર સાચો નથી ?
જો સંબંધ $R$: $\left\{ {\left( {x,y} \right);3x + 3y = 10} \right\} $ એ ગણ $N$ પર વ્યાખિયાયિત છે
વિધાન $-1$ : $R$ એ સમિત છે
વિધાન $-2$ : $R$ એ સ્વવાચક છે
વિધાન $-3$ : $R$ એ પરંપરિત છે.
હોય તો આપેલ વિધાન માટે સાચી શ્રેણી ……….. થાય.
(જ્યા $T$ અને $F$ નો અર્થ અનુક્ર્મે સાચુ અને ખોટુ છે.)
Confusing about what to choose? Our team will schedule a demo shortly.