જો સંબંધ $R = \{(a, a)\}$ એ ગણ $A$ પરનો સંબંધ હોય તો $R$ એ .. . .
સંમિત
વિસંમિત
સંમિત અને વિસંમિત
સંમિત કે વિસંમિત નથી
(c) It is obvious.
જે પરંપરિત હોય પરંતુ સ્વવાચક કે સંમિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો
ધારો કે ગણ $A = A _{1} \cup A _{2} \cup \ldots \cup A _{k}$ છે. જ્યાં $i \neq j, 1 \leq i, j \leq k$ માટે $A _{i} \cap A _{i}=\phi$ છે. $A$ થી $A$ પરનો સંબંધ $R$ એ $R =\left\{(x, y): y \in A _{i}\right.$ તો અને તો જ $\left.x \in A _{i}, 1 \leq i \leq k\right\}$ પ્રમાણે વ્યાખ્યાયિત કરો.તો $R$ એ :
$R$ એ વાસ્તવિક સંખ્યા પરનો સંબંધ છે કે જેમાં $nm \ge 0$ હોય તો $R$ એ . . .
ધારોકે $\mathrm{A}=\{1,2,3,4,5\}$ .ધારો કે $\mathrm{R}$ એ $\mathrm{A}$ પર $x \mathrm{R} y$ તો અને તો જ $4 x \leq 5 y$ પ્રમાણે વ્યાખ્યાયિત એક સંબંધ છે. ધારોકે $\mathrm{R}$ ના સભ્યોની સંખ્યા $m$ છે અને $n$ એ $R$ ને સંમિત સંબંધ બનાવવા માટે તેમા ઉમેરવા પડતા $A \times A$ ના સભ્યોની ન્યૂનતમ સંખ્યા છે. તો $m+n=$ …………
સંબંધ $R$ એ ગણ $A$ પરનો વિસંમિત સંબંધ થવા માટે $(a,\,b) \in R \Rightarrow (b,\,a) \in R$ એ .
Confusing about what to choose? Our team will schedule a demo shortly.