જો $R\,= \{(x,y) : x,y \in N\, and\, x^2 -4xy +3y^2\, =0\}$, કે જ્યાં  $N$ એ પ્રાકૃતિક સંખ્યાનો ગણ હોય તો  $R$ એ .. . 

  • [JEE MAIN 2013]
  • A

    સ્વવાચક છે  પરંતુ પરંપરિત અને સંમિત  નથી.

  • B

    પરંપરિત અને સંમિત છે 

  • C

    સ્વવાચક  અને સંમિત છે 

  • D

    સ્વવાચક અને  પરંપરિત છે

Similar Questions

જો $R$ એ ગણ $N × N$ પરનોે સંબંધ દર્શાવે કે જે $(a,\,b)R(c,\,d) \Rightarrow a + d = b + c.$ દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . . . . 

$\alpha \in N$ માટે $R =\{(x, y): 3 x+\alpha y$ એ $7$ નો ગુણિત છે. $\}$ દ્વારા આપેલ $N$ પરનો સંબંધ $R$ ધ્યાને લો. આ સંબંધ $R$ એ સામ્ય સંબંધ હોય, તો અને તો જ :

  • [JEE MAIN 2022]

ગણ  $A= \{a, b, c\}$ પરના બે સંબંધ $R_1 = \{(c, a) (b, b) , (a, c), (c,c), (b, c), (a, a)\}$ અને $R_2 = \{(a, b), (b, a), (c, c), (c,a), (a, a), (b, b), (a, c)\}$ હોય તો . . . 

  • [JEE MAIN 2018]

જો $A = \{1, 2, 3, 4\}$ અને $R$ એ $A$ પરનો સંબંધ છે કે જેથી $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1), (3, 1), (1, 3)\}$.તો $R$ એ . .  .

જો $R = \{ (3,\,3),\;(6,\;6),\;(9,\,9),\;(12,\,12),\;(6,\,12),\;(3,\,9),(3,\,12),\,(3,\,6)\} $ એ ગણ $A = \{ 3,\,6,\,9,\,12\} $ પરનો સંબંધ આપેલ હોય તો સંબંધ $R$ એ . . . . છે.       

  • [AIEEE 2005]