જો $n(A) = n$ હોય તો ગણ $A$ પરના સંબંધની કુલ સંખ્યા મેળવો.
${2^n}$
${2^{(n)!}}$
${2^{{n^2}}}$
એકપણ નહીં.
જો $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ એ ગણ $A = \{1, 2, 3, 4\}$ પરનો સંબંધ આપેલ હોય તો સંબંધ $R$ એ . . . . છે.
જો ગણ $A = \{1, 2, 3\}, B = \{1, 3, 5\}$ આપેલ છે અને સંબંધ $R:A \to B$ પર વ્યાખ્યાયિત હોય કે જેથી $R = \{(1, 3), (1, 5), (2, 1)\}$. તો ${R^{ - 1}}$ મેળવો.
જો $N$ એ $100$ કરતા વધારે પ્રાક્રુતિક સંખ્યાઓનો ગણ છે અને સંબંધ $R$ પર વ્યાખિયયિત છે :$R = \{(x,y) \in \,N × N :$ the numbers સંખ્યાઓ $x$ અને $y$ ને ઓછામા ઓછા બે વિભજ્યો છે.$\}.$ હોય તો $R$ એ ........
જો $I$ એ ધન પુર્ણાક સંખ્યાઓનો ગણ છે અને $R$ એ સંબંધ ગણ $I$ પર વ્યાખિયાયિત છે $R =\left\{ {\left( {a,b} \right) \in I \times I\,|\,\,{{\log }_2}\left( {\frac{a}{b}} \right)} \right.$ એ અઋણ પુર્ણાક છે.$\}$, હોય તો $R$ એ ..
ગણ $\{a, b, c, d\}$ પરનું સંબંધ $R = \{(a, b), (b, c), (b, d)\}$ સામ્ય સંબંંધ બને તે માટે ઓછામાં ઓછી સંખ્યામાં ઉમેરવામા આવતા ધટકોની સંખ્યા $............$ છે.