1.Relation and Function
easy

ધારો કે $f: X \rightarrow Y$ વિધેય છે. $X$ પર સંબંધ $R$ એ $R =\{(a, b): f(a)=f(b)\}$ દ્વારા આપેલ છે. $R$ એ સામ્ય સંબંધ છે કે નહિ તે ચકાસો. 

Option A
Option B
Option C
Option D

Solution

For every $a \in X ,(a, a) \in R ,$ since $f(a)=f(a),$ showing that $R$ is reflexive. Similarly, $(a, b) \in R \Rightarrow f(a)=f(b)$ $ \Rightarrow f(b)=f(a)$ $ \Rightarrow(b, a) \in$ $R$. Therefore, $R$ is symmetric. Further, $(a, b) \in R$ and $(b, c) \in R \Rightarrow$ $f(a)=f(b)$ and $f(b)=f(c) \Rightarrow f(a)$ $=f(c) \Rightarrow(a, c) \in R ,$ which implies that $R$ is transitive. Hence, $R$ is an equivalence relation.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.