જો $R$ અને $S$ એ ગણ $A$ પરના બે સંબંધ હોય તો . . . .
$R$ અને $S$ પરંપરિત, તો $R \cap S $ પરંપરિત થાય.
$R$ અને $S$ એ સ્વવાચક હોય તો $R \cap S $ પણ સ્વવાચક હોય
$R$ અને $S$ એ સંમિત હોય $R \cup S $ સંમિત પણ સંમિત હોય
ઉપરોક્ત બધાજ
જો સંબંધ ${R_1}$ એ ${R_1} = \{ (a,\,b)|a \ge b,\,a,\,b \in R\} $ દ્વારા વ્યાખ્યાયિત હોય તો ${R_1}$ એ . . . .
સાબિત કરો કે સમતલમાં આવેલાં બિંદુઓના ગણ $\mathrm{A}$ પર વ્યાખ્યાયિત સંબંધ $\mathrm{R} =\{( \mathrm{P} ,\, \mathrm{Q} ):$ ઊગમબિંદુથી બિંદુ $\mathrm{P}$ નું અંતર એ ઊગમબિંદુથી બિંદુ $\mathrm{Q}$ ના અંતર જેટલું જ છે; હોય, તો $\mathrm{R}$ એ સામ્ય સંબંધ છે. સાબિત કરો કે ઊગમબિંદુ સિવાયના બિંદુ ને સાથે સંબંધ $\mathrm{R}$ ધરાવતા બધાં જ બિંદુઓનો ગણ એ $\mathrm{P}$ માંથી પસાર થતું અને ઊગમબિંદુ કેન્દ્રવાળું વર્તુળ છે.
જો $A$ એ પરિવારના બાળકોનો અરિકત ગણ છે.જો $A$ પરનો સંબંધએ ‘$x$ એ $y$ નો ભાઇ છે ‘તો સંબંધ . . . .
કોઈ ચોક્કસ સમયે કોઈ એક નગરમાં વસતા મનુષ્યોના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R =\{(x, y): x$ એ $y$ ની પત્ની છે. $\} $ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
જો $M$ $3 \times 3$ નો શ્રેણિક દર્શાવે અને સંબંધ $R$ માટે
$R = \{ (A,B) \in M \times M$ : $AB = BA\} ,$ હોય તો $R$ એ...........