ગણ $A = \{1,2,3\}$ ધ્યાનમા લ્યો. $(1,2)$ & $(2,1)$ સમાવતા $A$ પરના સમિત સંબંધોની સંખ્યાઓ ............ થાય.
$18$
$16$
$24$
$32$
જો $R_{1}$ અને $R_{2}$ ગણ $A$ માં સામ્ય સંબંધો હોય, તો સાબિત કરો કે $R_{1} \cap R_{2}$ પણ સામ્ય સંબંધ છે.
ધારોકે $A=\{1,2,3,4\}$ અને સંબંધ એ ગણ $A \times A$ પર $R=\{((a, b),(c, d)): 2 a+3 b=4 c+5 d\}$ મુજબ વ્યાખ્યાયિત થયેલ છે. તો $R$ ના ધટકોની સંખ્યા $......$ છે.
અહી $R$ એ વાસ્તવિક સંખ્યા પરનો સંબંધ છે. કે જે $R=\{(a, b): 3 a-3 b+\sqrt{7}$ એ અસંમેય સંખ્યા છે $\}$. તો $R$ એ . . . .
$R$ પર વ્યાખ્યાયિત સંબંધ $S =\left\{(a, b): a \leq b^{3}\right\}$ એ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે ચકાસો.
ધારોકે $\mathrm{A}=\{1,2,3,4,5\}$ .ધારો કે $\mathrm{R}$ એ $\mathrm{A}$ પર $x \mathrm{R} y$ તો અને તો જ $4 x \leq 5 y$ પ્રમાણે વ્યાખ્યાયિત એક સંબંધ છે. ધારોકે $\mathrm{R}$ ના સભ્યોની સંખ્યા $m$ છે અને $n$ એ $R$ ને સંમિત સંબંધ બનાવવા માટે તેમા ઉમેરવા પડતા $A \times A$ ના સભ્યોની ન્યૂનતમ સંખ્યા છે. તો $m+n=$ ............