Let $R_{1}$ and $R_{2}$ be relations on the set $\{1,2, \ldots, 50\}$ such that $R _{1}=\left\{\left( p , p ^{ n }\right)\right.$ : $p$ is a prime and $n \geq 0$ is an integer $\}$ and $R _{2}=\left\{\left( p , p ^{ n }\right)\right.$ : $p$ is a prime and $n =0$ or $1\}$. Then, the number of elements in $R _{1}- R _{2}$ is........
$90$
$3$
$9$
$8$
Let $R$ be a relation on a set $A$ such that $R = {R^{ - 1}}$, then $R$ is
Let $R$ be a relation from $A = \{2,3,4,5\}$ to $B = \{3,6,7,10\}$ defined by $R = \{(a,b) |$ $a$ divides $b, a \in A, b \in B\}$, then number of elements in $R^{-1}$ will be-
Let $A =\{2,3,4,5, \ldots ., 30\}$ and $^{\prime} \simeq ^{\prime}$ be an equivalence relation on $A \times A ,$ defined by $(a, b) \simeq (c, d),$ if and only if $a d=b c .$ Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4,3)$ is equal to :
$R$ is a relation over the set of real numbers and it is given by $nm \ge 0$. Then $R$ is
A relation from $P$ to $Q$ is