Let $a_1, a_2, \ldots . a_{10}$ be $10$ observations such that $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$ and $\sum_{\forall \mathrm{k}<\mathrm{j}} \mathrm{a}_{\mathrm{k}} \cdot \mathrm{a}_{\mathrm{j}}=1100$. Then the standard deviation of $a_1, a_2, \ldots, a_{10}$ is equal to :

  • [JEE MAIN 2024]
  • A

    $5$

  • B

     $\sqrt{5}$

  • C

    $10$

  • D

    $\sqrt{115}$

Similar Questions

The frequency distribution:

$\begin{array}{|l|l|l|l|l|l|l|} \hline X & A & 2 A & 3 A & 4 A & 5 A & 6 A \\ \hline f & 2 & 1 & 1 & 1 & 1 & 1 \\ \hline \end{array}$

 where $A$ is a positive integer, has a variance of $160 .$ Determine the value of $A$.

The mean and variance of $10$ observations were calculated as $15$ and $15$ respectively by a student who took by mistake $25$ instead of $15$ for one observation. Then, the correct standard deviation is$.....$

  • [JEE MAIN 2022]

Let in a series of $2 n$ observations, half of them are equal to $a$ and remaining half are equal to $-a.$ Also by adding a constant $b$ in each of these observations, the mean and standard deviation of new set become $5$ and $20 ,$ respectively. Then the value of $a^{2}+b^{2}$ is equal to ....... .

  • [JEE MAIN 2021]

Calculate mean, variance and standard deviation for the following distribution.

Classes $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$
${f_i}$ $3$ $7$ $12$ $15$ $8$ $3$ $2$

What is the standard deviation of the following series

class $0-10$ $10-20$ $20-30$ $30-40$
Freq $1$ $3$ $4$ $2$