माना $10$ प्रेक्षणों $\mathrm{a}_1, \mathrm{a}_2, \ldots . \mathrm{a}_{10}$ के लिए $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$तथा $\sum_{\forall k < j} a_k \cdot a_j=1100$ है। तो $a_1, a_2, \ldots, a_{10}$ का मानक विचलन बराबर है :

  • [JEE MAIN 2024]
  • A

    $5$

  • B

     $\sqrt{5}$

  • C

    $10$

  • D

    $\sqrt{115}$

Similar Questions

$40$ प्रेक्षणों का माध्य तथा मानक विचलन क्रमशः $30$ तथा $5$ हैं। यह पाया गया कि इनमें से दो प्रेक्षण $12$ तथा $10$ गलती से लिखे गए। यदि गलती से लिखे दो प्रेक्षणों को हटाने के पश्चात् शेष आकड़ों का मानक विचलन $\sigma$ है, तो $38 \sigma^2$ बराबर है $...........$

  • [JEE MAIN 2022]

माना बंटन

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

जहाँ $\sum \mathrm{f}_{\mathrm{i}}=62$ है, का माध्य $\mu$ तथा मानक विचलन $\sigma$ हैं। यदि $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, तो $\left[\mu^2+\sigma^2\right]$ बराबर है

  • [JEE MAIN 2023]

$15$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $12$ तथा 3 प्राप्त किए गए। पुनः जाँच पर यह पाया गया कि एक प्रेक्षण को $12$ की जगह $10$ पढ़ा गया था। यदि सही प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\mu$ तथा $\sigma^2$ है, तो $15\left(\mu+\mu^2+\sigma^2\right)$ बराबर है ................|

  • [JEE MAIN 2024]

$25$ संख्याओं का मानक विचलन $40$ है। यदि प्रत्येक संख्या को $5$ बढ़ाया गया है, तब नया मानक विचलन होगा

$(2n +1)$ प्रेक्षणों ${x_1},\, - {x_1},\,{x_2},\, - {x_2},\,.....{x_n},\, - {x_n}$ तथा $0$ (शून्य) के लिये (जहाँ $x$ के सभी मान भिन्न है)। माना $S.D$ तथा $M.D.$ क्रमश: मानक विचलन तथा माध्यिका प्रदर्शित करते हैं, तब निम्न में से कौनसा सदैव सत्य है