13.Statistics
hard

ધારો કે $a_1, a_2, \ldots a_{10}$ એવા $10$ અવલોકનો છે કે જેથી $\sum_{k=1}^{10} a_k=50$ અને $\sum_{k < j} a_k \cdot a_j=1100$, તો $a_1, a_2, \ldots, a_{10}$ નું પ્રમાણિત વિચલન ....................છે.

A

$5$

B

 $\sqrt{5}$

C

$10$

D

$\sqrt{115}$

(JEE MAIN-2024)

Solution

$ \sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50 $

$ \mathrm{a}_1+\mathrm{a}_2+\ldots+\mathrm{a}_{10}=50$     $………(i)$

$ \sum_{\forall \mathrm{k}<\mathrm{j}} \mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{j}}=1100 $         $………..(ii)$

$ \text { If } \mathrm{a}_1+\mathrm{a}_2+\ldots+\mathrm{a}_{10}=50$ .

$ \left(\mathrm{a}_1+\mathrm{a}_2+\ldots+\mathrm{a}_{10}\right)^2=2500 $

$\Rightarrow \sum_{\mathrm{i}=1}^{10} \mathrm{a}_{\mathrm{i}}^2+2 \sum_{\mathrm{k}<\mathrm{j}} \mathrm{a}_{\mathrm{k}} \mathrm{a}_{\mathrm{j}}=2500$

$ \Rightarrow \sum_{\mathrm{i}=1}^{10} \mathrm{a}_{\mathrm{i}}^2=2500-2(1100) $

$ \sum_{\mathrm{i}=1}^{10} \mathrm{a}_{\mathrm{i}}^2=300, \text { Standard deviation ' } \sigma \text { ' } $

$ \frac{\sum^{\frac{a_i^2}{2}}}{10}-\left(\frac{\sum \mathrm{a}_{\mathrm{i}}}{10}\right)^2=\sqrt{\frac{300}{10}-\left(\frac{50}{10}\right)^2}$

$ =\sqrt{30-25}=\sqrt{5}$

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.