જો સંબંધ $R$ એ $A = \{1,2, 3, 4\}$ થી $B = \{1, 3, 5\}$ પર $(a,\,b) \in R \Leftrightarrow a < b,$ દ્વારા વ્યાખ્યાયિત હોય તો $Ro{R^{ - 1}}$=
$\{(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)\}$
$\{(3, 1) (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)\}$
$\{(3, 3), (3, 5), (5, 3), (5, 5)\}$
$\{(3, 3) (3, 4), (4, 5)\}$
ત્રણ સભ્યો ધરાવતા ગણ પર કેટલા સ્વવાચક સંબંધો મળે?
જો સંબંધ ${R_1}$ એ ${R_1} = \{ (a,\,b)|a \ge b,\,a,\,b \in R\} $ દ્વારા વ્યાખ્યાયિત હોય તો ${R_1}$ એ . . . .
ધારોકે $A=\{0,3,4,6,7,8,9,10\}$ અને $R$ એ $A$ પર વ્યાખ્યાયિત એવો સંબંધ છે કે જેથી $R=\{(x, y) \in A \times A: x-y$ એ એકી ધન પૂણાંક છે અથવા $x-y=2\}$. સંબંધ $R$ સંમિત સંબંધ બને તે માટે તેમાં ઉમેરાતા ન્યૂનતમ ધટકોની સંખ્યા $........$ છે.
જો $A=\{1,2,3, \ldots . . . .100\}$. જો $R$ એ સંબંધ $A$ પર છે. તથા $(x, y) \in R$ થી વ્યાખાયિત છે, જો અને તો જ $2 x=3 y$. જો $R_1$ એ $A$ પર સંમિત સંબંધ હોય તો $R \subset$ $R_1$ અને $R_1$ ના ઘટકોની સંખ્યા $n$ છે. તો $n$ ની ન્યુનત્તમ કિંમત મેળવો.
ત્રણ, $\{a, b, c \}$ પરનો સંબંધ $R =\{( a , b ),( b , c )\}$ સંમિત અને પરંપરિત બને તે માટે તેમાં ન્યુનતમ ઘટકો ઉમેરવા પડે.