8. Sequences and Series
medium

ધારો કે  $\mathrm{S}_{\mathrm{n}}$ સમાંતર શ્રેણીનાં પહેલા $\mathrm{n}$ પદોનો સરવાળો દર્શાવે  છે. જો  $\mathrm{S}_{20}=790$ અને $\mathrm{S}_{10}=145$ હોય, તો  $\mathrm{S}_{15}-\mathrm{S}_5=$....................

A

$395$

B

$390$

C

$405$

D

$410$

(JEE MAIN-2024)

Solution

$\mathrm{S}_{20}=\frac{20}{2}[2 \mathrm{a}+19 \mathrm{~d}]=790 $

$ 2 \mathrm{a}+19 \mathrm{~d}=79$      $………….(1)$

$ \mathrm{~S}_{10}=\frac{10}{2}[2 \mathrm{a}+9 \mathrm{~d}]=145 $

$ 2 \mathrm{a}+9 \mathrm{~d}=29$        $…………….(2)$   

From $(1)$ and $(2)$ a $=-8, d=5$

$ S_{15}-S_5=\frac{15}{2}[2 a+14 d]-\frac{5}{2}[2 a+4 d] $

$ =\frac{15}{2}[-16+70]-\frac{5}{2}[-16+20] $

$ =405-10 $

$ =395$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.