ધારો કે  $\mathrm{S}_{\mathrm{n}}$ સમાંતર શ્રેણીનાં પહેલા $\mathrm{n}$ પદોનો સરવાળો દર્શાવે  છે. જો  $\mathrm{S}_{20}=790$ અને $\mathrm{S}_{10}=145$ હોય, તો  $\mathrm{S}_{15}-\mathrm{S}_5=$....................

  • [JEE MAIN 2024]
  • A

    $395$

  • B

    $390$

  • C

    $405$

  • D

    $410$

Similar Questions

$3$ અને $23$ ની વચ્ચેના ચાર સમાંતર મધ્યક..... છે.

અહી $a$, $b$ એ બે શૂન્યતર વાસ્તવિક સંખ્યા છે . જો  $p$ અને $r$ એ સમીકરણ $x ^{2}-8 ax +2 a =0$ ના બીજ છે અને $q$ અને $s$ એ સમીકરણ $x^{2}+12 b x+6 b$ $=0$ ના બીજ છે કે જેથી  $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ એ સમાંતર શ્રેણીમાં છે તો $a ^{-1}- b ^{-1}$ ની કિમંત $......$ થાય.

  • [JEE MAIN 2022]

એક માણસ $4500$ ચલણી નોટોની ગણતરી કરે છે. ધારો કે $a_n $ નોટોની સંખ્યા દર્શાવે છે. તે $n$ મિનીટમાં ગણતરી કરે છે. જો $a_1$ = $a_2$ = … = $a_1$0 $= 150$ અને $a_{10}, a_{11},.....$  સમાંતર શ્રેણીના સામાન્ય તફાવત $-2$  સાથે હોય, તો તેના દ્વારા બધી નોટોની ગણતરી કરવા માટે લાગતો સમય કેટલા .............. મિનિટ હશે ?

નીચેની ત્રણ સમાંતર શ્રેણીઓ

$3,7,11,15,...................,399$

$2,5,8,11,............,359$ અને

$2,7,12,17,...........,197$,

ના સામાન્ય પદોનો સરવાળો $.....$ છે.

  • [JEE MAIN 2023]

જો $a, b, c,d$, તે સમગુણોત્તર શ્રેણીમાં હોય, અને જો $a$ અને $b$ $x^{2}-3 x+p=0$ ના બીજ હોય અને $c, d$ $x^{2}-12 x+q=0$ ના બીજ હોય તો સાબિત કરો કે $(q+p):(q-p)=17: 15$