माना $\mathrm{A}=\{1,2,3,4\}$ तथा $\mathrm{A}$ पर एक संबंध $\mathrm{R}=\{(1,2),(2,3),(1,4)\}$ है। माना $\mathrm{A}$ पर एक तुल्यता संबंध $\mathrm{S}$ है, $\mathrm{R} \subset \mathrm{S}$ है तथा $\mathrm{S}$ में अवयवों की संख्या $\mathrm{n}$ का निम्नतम मान है ...............
$16$
$15$
$14$
$13$
समुच्चय $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ में संबंध $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c})$, (b, d) $\}$ परिभाषित है न्यूनतम अवयवों की संख्या, जिन्हें $\mathrm{R}$ में जोड़ने पर संबंध तुल्यता संबंध हो जाये, होगी_____________ .
माना $ R$ समुच्चय $A$ पर संबंध इस प्रकार है कि $R = {R^{ - 1}}$ तब $R $ है
समुच्चय $A =\{ a , b , c \}$ पर निम्न दो द्विआधारी संबंधों पर विचार कीजिए
$R _{1}=\{( c , a ),( b , b ),( a , c ),( c , c ),( b , c ),( a , a )\}$
और $R _{2}=\{( a , b ),( b , a ),( c , c ),( c , a ),( a , a ),( b , b ),( a , c )\}$ तो
माना $A = \{a, b, c\} $ तथा $B = \{1, 2\} $ तब संबंध $R$ जो कि समुच्चय $A$ से $B$ में परिभाषित है। अत: $R $ बराबर होगा
मान लीजिए कि $L$ किसी समतल में स्थित समस्त रेखाओं का एक समुच्चय है तथा $R =\left\{\left( L _{1}, L _{2}\right): L _{1}, L _{2}\right.$ पर लंब है $\}$ समुच्चय $L$ में परिभाषित एक संबंध है। सिद्ध कीजिए कि $R$ सममित है किंतु यह न तो स्वतुल्य है और न संक्रामक है।