माना दो सम्मिश्र संख्याओं $\mathrm{z}_1$ तथा $\mathrm{z}_2$ के लिए $z_1+z_2=5$ तथा $z_1^3+z_2^3=20+15 i$ है तो $\left|z_1^4+z_2^4\right|$ बराबर है -
$30 \sqrt{3}$
$75$
$15 \sqrt{15}$
$25 \sqrt{3}$
किन्हीं दो सम्मिश्र संख्याओं ${z_1}$,${z_2}$तथा वास्तविक संख्याओं $a$ तथा $b$ के लिये $|(a{z_1} - b{z_2}){|^2} + |(b{z_1} + a{z_2}){|^2} = $
यदि $z = \cos \frac{\pi }{6} + i\sin \frac{\pi }{6}$, तब
यदि $z$ एक सम्मिश्र संख्या हो, तो $|z| + |z - 1|$ का न्यूनतम मान है
यदि ${z_1}$, ${z_2}$दो सम्मिश्र संख्याएँ इस प्रकार हों कि $\left| \frac{z_1 +z_2}{z_1 - z_2} \right|=1$ , तब $\frac{{{z_1}}}{{{z_2}}}$ ऐसी संख्या है जो कि होगी
सम्मिश्र संख्या $z = \sin \alpha + i(1 - \cos \alpha )$का कोणांक हैं