જો $S_n$ અને  $s_n$ એ $n$ પદો ધરાવતી બે ભિન્ન સમાંતર શ્રેણી છે કે જેના માટે  $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ હોય તો $\frac{{{s_n}}}{{{S_{2n}}}}$ ની કિમત મેળવો 

  • A

    $\frac{{3n - 13}}{{14n + 26}}$

  • B

    $\frac{{6n - 26}}{{17n + 13}}$

  • C

    $\frac{{3n - 13}}{{28n + 26}}$

  • D

    એક પણ નહી 

Similar Questions

એક સમાંતર શ્રેણીનાં પ્રથમ $p, q$ અને $r$ પદોના સરવાળા અનુક્રમે $a, b$ અને $c$ છે. સાબિત કરો કે $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$

જો શ્રેણીના $n $ પદોનો સરવાળો $3n^2 + 4n$ ; થાય, તો તે કઈ શ્રેણી હોય ?

$\Delta {\text{ABC}}$ માટે $a\,\,{\cos ^2}\frac{C}{2} + c\,\,{\cos ^2}\frac{A}{2}\,\, = \,\,\frac{{3b}}{2}$ તો બાજુ એ ${\text{a, b, c }}......$

ગણ $\{\mathrm{n} \in\{1,2, \ldots \ldots ., 100\} \mid$  $n$ અને $2040$ નો ગુ.સા.અ  $1$ થાય  $\,\}$ ના બધાજ ઘટકોનો સરવાળો મેળવો.

  • [JEE MAIN 2021]

જો સમાંતર શ્રેણીનું પ્રથમ પદ $a$ સામાન્ય તફાવત $1 $ અને અંતિમ પદ $b$ પદ, હોય, તો તેનો સરવાળો કેટલો થાય ?