3 and 4 .Determinants and Matrices
hard

Let $A=I_2-2 \mathrm{MM}^{\mathrm{T}}$, where $\mathrm{M}$ is real matrix of order $2 \times 1$ such that the relation $M^T M=I_1$ holds. If $\lambda$ is a real number such that the relation $\mathrm{AX}=\lambda \mathrm{X}$ holds for some non-zero real matrix $X$ of order $2 \times 1$, then the sum of squares of all possible values of $\lambda$ is equal to:

A

$1$

B

$2$

C

$3$

D

$4$

(JEE MAIN-2024)

Solution

$ \mathrm{A}=\mathrm{I}_2-2 \mathrm{MM}^{\mathrm{T}} $

$ \mathrm{A}^2=\left(\mathrm{I}_2-2 \mathrm{MM}^{\mathrm{T}}\right)\left(\mathrm{I}_2-2 \mathrm{MM}^{\mathrm{T}}\right) $

$ =\mathrm{I}_2-2 \mathrm{MM}^{\mathrm{T}}-2 \mathrm{MM}^{\mathrm{T}}+4 \mathrm{MM}^{\mathrm{T}} \mathrm{MM}^{\mathrm{T}} $

$ =\mathrm{I}_2-4 \mathrm{MM}^{\mathrm{T}}+4 \mathrm{MM}^{\mathrm{T}} $

$ =\mathrm{I}_2 $

$ \mathrm{AX}=\lambda \mathrm{X} $

$ \mathrm{A}^2 \mathrm{X}=\lambda \mathrm{AX}$

$ \mathrm{X}=\lambda(\lambda \mathrm{X}) $

$ \mathrm{X}=\lambda^2 \mathrm{X} $

$\mathrm{X}\left(\lambda^2-1\right)=0 $

$ \lambda^2=1 $

$ \lambda= \pm 1$

Sum of square of all possible values $=2$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.