9.Straight Line
hard

Let $A B C$ be an isosceles triangle in which $A$ is at $(-1,0), \angle A=\frac{2 \pi}{3}, A B=A C$ and $B$ is on the positive $\mathrm{x}$-axis. If $\mathrm{BC}=4 \sqrt{3}$ and the line $\mathrm{BC}$ intersects the line $y=x+3$ at $(\alpha, \beta)$, then $\frac{\beta^4}{\alpha^2}$ is :

A

$85$

B

$36$

C

$45$

D

$75$

(JEE MAIN-2024)

Solution

$\frac{\mathrm{c}}{\sin 30^{\circ}}=\frac{4 \sqrt{3}}{\sin 120^{\circ}}$ [By sine rule]

$2 c=8 \Rightarrow c=4$

$ \mathrm{AB}=|(\mathrm{b}+1)|=4 $

$ \mathrm{~b}=3, \mathrm{~m}_{\mathrm{AB}}=0 $

$ \mathrm{~m}_{\mathrm{BC}}=\frac{-1}{\sqrt{3}} $

$ B C:-y=\frac{-1}{\sqrt{3}}(x-3) $

$ \sqrt{3} \mathrm{y}+\mathrm{x}=3 $

$ \text { Point of intersection : } y=x+3, \sqrt{3} y+x=3 $

$ (\sqrt{3}+1) \mathrm{y}=6 $

$ \mathrm{y}=\frac{6}{\sqrt{3}+1} $

$ x=\frac{6}{\sqrt{3}+1}-3 $

$ =\frac{6-3 \sqrt{3}-3}{\sqrt{3}+1} $

$ =3 \frac{(1-\sqrt{3})}{(1+\sqrt{3})}=\frac{-6}{(1+\sqrt{3})^2} $

$ \frac{\beta^4}{\alpha^2}=36 $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.