ધારો કે $\mathrm{S}=\left\{\sin ^2 2 \theta:\left(\sin ^4 \theta+\cos ^4 \theta\right) x^2+(\sin 2 \theta) x+\left(\sin ^6 \theta+\cos ^6 \theta\right)=0\right.$ ને વાસ્તવિક બીજ છે $\}$. જો $\alpha$ અને $\beta$ અનુક્રમે ગણ $S$ ના ન્યૂનતમ અને મહત્તમ સભ્યો હોય, તો $3((\alpha-$ $\left.2)^2+(\beta-1)^2\right)=$ ..........
$4$
$2$
$7$
$9$
જો $r_1, r_2, r_3$ એ સમીકરણ $x^3 -2x^2 + 4x + 5074 = 0$ ના બીજો હોય તો $(r_1 + 2)(r_2 + 2)(r_3 + 2)$ ની કિમત મેળવો
એક ત્રિઘાત સમીકરણમાં $x^2$ નો સહગુણક શૂન્ય અને બાકીના સહગુણક વાસ્તવિક અને એક ઉકેલ $\alpha = 3 + 4\, i$ તથા બાકીના ઉકેલો $\beta$ અને $\gamma$ હોય તો $\alpha \beta \gamma$ ની કિમત મેળવો
જો $\alpha, \beta$ એ સમીકરણ $x^{2}+5 \sqrt{2} x+10=0, \alpha\,>\,\beta$ ના બીજ છે અને દરેક ધન પૃણાંક $n$ માટે $P_{n}=\alpha^{n}-\beta^{n}$ હોય તો $\left(\frac{P_{17} P_{20}+5 \sqrt{2} P_{11} P_{19}}{P_{18} P_{19}+5 \sqrt{2} P_{18}^{2}}\right)$ ની કિમંત મેળવો.
જો $p, q$ અને $r$ $(p \ne q,r \ne 0),$ વાસ્તવિક સંખ્યા છે કે જેથી $\frac{1}{{x + p}} + \frac{1}{{x + q}} = \frac{1}{r}$ ના ઉકેલો સમાન મુલ્ય અને વિરુદ્ધ ચિહનના હોય તો બંને ઉકેલોના વર્ગ નો સરવાળો મેળવો.