If the length of the latus rectum of the ellipse $x^{2}+$ $4 y^{2}+2 x+8 y-\lambda=0$ is $4$ , and $l$ is the length of its major axis, then $\lambda+l$ is equal to$......$
$72$
$73$
$74$
$75$
The angle of intersection of ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and circle ${x^2} + {y^2} = ab$, is
Let the line $2 \mathrm{x}+3 \mathrm{y}-\mathrm{k}=0, \mathrm{k}>0$, intersect the $\mathrm{x}$-axis and $\mathrm{y}$-axis at the points $\mathrm{A}$ and $\mathrm{B}$, respectively. If the equation of the circle having the line segment $\mathrm{AB}$ as a diameter is $\mathrm{x}^2+\mathrm{y}^2-3 \mathrm{x}-2 \mathrm{y}=0$ and the length of the latus rectum of the ellipse $\mathrm{x}^2+9 \mathrm{y}^2=\mathrm{k}^2$ is $\frac{\mathrm{m}}{\mathrm{n}}$, where $\mathrm{m}$ and $\mathrm{n}$ are coprime, then $2 \mathrm{~m}+\mathrm{n}$ is equal to
The point $(4, -3)$ with respect to the ellipse $4{x^2} + 5{y^2} = 1$
Consider an ellipse with foci at $(5,15)$ and $(21,15)$. If the $X$-axis is a tangent to the ellipse, then the length of its major axis equals
If $y = mx + c$ is tangent on the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$, then the value of $c$ is