Let $\alpha, \beta ; \alpha>\beta$, be the roots of the equation $x^2-\sqrt{2} x-\sqrt{3}=0$. Let $P_n=\alpha^n-\beta^n, n \in N$. Then $(11 \sqrt{3}-10 \sqrt{2}) \mathrm{P}_{10}+(11 \sqrt{2}+10) \mathrm{P}_{11}-11 \mathrm{P}_{12}$ is equal to :

  • [JEE MAIN 2024]
  • A

     $10 \sqrt{2} \mathrm{P}_9$

  • B

     $10 \sqrt{3} \mathrm{P}_9$

  • C

     $11 \sqrt{2} \mathrm{P}_9$

  • D

     $11 \sqrt{3} \mathrm{P}_9$

Similar Questions

If the product of roots of the equation ${x^2} - 3kx + 2{e^{2\log k}} - 1 = 0$ is $7$, then its roots will real when

  • [IIT 1984]

The smallest value of ${x^2} - 3x + 3$ in the interval $( - 3,\,3/2)$ is

Let $\alpha ,\beta $ be the roots of ${x^2} + (3 - \lambda )x - \lambda = 0.$ The value of $\lambda $ for which ${\alpha ^2} + {\beta ^2}$ is minimum, is

The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies

  • [JEE MAIN 2013]

The number of distinct real roots of the equation $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$, is ...........

  • [JEE MAIN 2024]