ધારો કે $\alpha, \beta ; \alpha>\beta$ એ સમીકરણ $x^2-\sqrt{2} x-\sqrt{3}=0$ ના બીજ છે. ધારો કે $\mathrm{P}_n=\alpha^n-\beta^n, n \in \mathbb{N}$. તો $(11 \sqrt{3}-10 \sqrt{2}) \mathrm{P}_{10}+(11 \sqrt{2}+10) \mathrm{P}_{11}-11 \mathrm{P}_{12}=$ .............
$10 \sqrt{2} \mathrm{P}_9$
$10 \sqrt{3} \mathrm{P}_9$
$11 \sqrt{2} \mathrm{P}_9$
$11 \sqrt{3} \mathrm{P}_9$
સમીકરણ $x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 14$ નું લઘુત્તમ મૂલ્ય કેટલું થાય ?
સમીકરણ ${x^2} - |x + 2| + x > 0,$ માટે, $x$ ની વાસ્તવિક સંખ્યાઓનો ગણ મેળવો.
જો $x^3 + 5x^2 - 7x - 1 = 0$ ના બીજ $\alpha$, $\beta$, $\gamma$ હોય, તો કયા સમીકરણના બીજ $\alpha$$\beta$, $\beta$$\gamma$, $\gamma$$\alpha$ હોય ?
જો $x$ એ વાસ્તવિક હોય તો સમીકરણ $\frac{{x + 2}}{{2{x^2} + 3x + 6}}$ ની કિંમતોનો ગણ મેળવો.
જો $\alpha , \beta $ એ સમીકરણ $x^2 - 2x + 4 = 0$ ના બીજો હોય તો $\alpha ^n +\beta ^n$ ની કિમત મેળવો