एक दीर्घवृत्त बिन्दु $(-3, 1)$ से गुजरता है तथा उसकी उत्केन्द्रता $\sqrt {\frac{2}{5}} $ है। दीर्घवृत्त का समीकरण होगा
$3{x^2} + 5{y^2} = 32$
$3{x^2} + 5{y^2} = 25$
$3{x^2} + {y^2} = 4$
$3{x^2} + {y^2} = 9$
यदि दीर्घवृत्त $25 x ^2+4 y ^2=1$ पर स्थित बिन्दु $(\alpha, \beta)$ से परवलय $y ^2=4 x$ पर दो स्पर्श रेखायें इस प्रकार खींची जाती है कि एक स्पर्श रेखा की प्रवणता, दूसरी स्पर्श रेखा की प्रवणता की चार गुना है, तो $(10 \alpha+5)^2+\left(16 \beta^2+50\right)^2$ का मान
दीर्घवृत्त $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$ का केन्द्र है
माना एक दीर्घवृत्त, जिसका केन्द्र $(1,0)$ पर है तथा नाभिलंब जीवा की लंबाई $\frac{1}{2}$ है, का दीर्घ अक्ष, $\mathrm{x}$-अक्ष के अनुदिश है। यदि इसका लघु अक्ष इसकी नाभि पर $60^{\circ}$ का कोण बनाता हैं, तो इसके लघु तथा दीर्घ अक्षों की लंबाईयों के योग का वर्ग बराबर है :
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ व वृत्त ${x^2} + {y^2} = ab$ का प्रतिच्छेद कोण है
दीर्घवृत्त $25{x^2} + 16{y^2} - 150x - 175 = 0$ की उत्केन्द्रता है