उस दीर्घवृत्त का समीकरण, जिसके शीर्ष $(2, -2), (2, 4)$ हैं तथा उत्केन्द्रता $\frac{1}{3}$ है, होगा
$\frac{{{{(x - 2)}^2}}}{9} + \frac{{{{(y - 1)}^2}}}{8} = 1$
$\frac{{{{(x - 2)}^2}}}{8} + \frac{{{{(y - 1)}^2}}}{9} = 1$
$\frac{{{{(x + 2)}^2}}}{8} + \frac{{{{(y + 1)}^2}}}{9} = 1$
$\frac{{{{(x - 2)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{8} = 1$
दीर्घवृत्त $\frac{{{x^2}}}{{27}} + {y^2} = 1$ के बिन्दु $(3\sqrt 3 \cos \theta ,\;\sin \theta )$ पर स्पर्श खींची गयी है। ( जहाँ $\theta \in (0,\;\pi /2)$ तब $\theta $ के किस मान के लिए स्पर्श द्वारा अक्षों पर काटे गये अंत:खण्डो का योग न्यूनतम होगा
वक्रों $y^2=2 x$ तथा $x^2+y^2=4 x$, के बिन्दु $(2,2)$ पर स्पर्श रेखाएँ तथा रेखा $\mathrm{x}+\mathrm{y}+2=0$ एक त्रिभुज बनाती है। यदि इस त्रिभुज के परिवृत्त की त्रिज्या है तो $\mathrm{r}^2$ बराबर है___________.
यदि दो बिन्दुओं $A$ तथा $B$ के निर्देशांक क्रमशः $(\sqrt{7}, 0)$ तथा $(-\sqrt{7}, 0)$ हैं और शांकव (conic) $9 x ^{2}+16 y ^{2}$ $=144$ पर कोई बिन्दु $P$ है, तो $PA + PB$ बराबर है
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ के बीच की दूरी $8$ एवं नियताओं के बीच की दूरी $18$ है, होगा
दीर्घवृत्त $9{x^2} + 25{y^2} = 225$ की उत्क्रेन्द्रता है