उस दीर्घवृत्त का समीकरण, जिसके शीर्ष $(2, -2), (2, 4)$ हैं तथा उत्केन्द्रता $\frac{1}{3}$ है, होगा
$\frac{{{{(x - 2)}^2}}}{9} + \frac{{{{(y - 1)}^2}}}{8} = 1$
$\frac{{{{(x - 2)}^2}}}{8} + \frac{{{{(y - 1)}^2}}}{9} = 1$
$\frac{{{{(x + 2)}^2}}}{8} + \frac{{{{(y + 1)}^2}}}{9} = 1$
$\frac{{{{(x - 2)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{8} = 1$
यदि वक्रों $\frac{x^2}{16}+\frac{y^2}{9}=1$ और $x^2+y^2=12$ की उभयनिष्ट स्पर्श रेखा की ढाल $m$ हो तो $12 m ^2$ का मान होगा
माना $a , b$ तथा $\lambda$ धनात्मक वास्तविक संख्यायें है। माना परवलय $y ^2=4 \lambda x$ के नाभिलम्ब का अंतिम बिन्दु $P$ है तथा माना दीर्घवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{ b ^2}=1$, बिन्दु $P$ से गुजरता है। यदि परवलय तथा दीर्घवृत्त के बिन्दु $P$ पर खींची गई स्पर्श रेखायें एक दूसरे के लम्बवत् हो, तो दीर्घवृत्त की उत्केन्द्रता होगी
दीर्घवृत्त $9{x^2} + 16{y^2} = 180$ पर स्थित बिन्दु $(2, 3)$ पर खींचे गये अभिलम्ब का समीकरण है
यदि रेखा $y = 2x + c$ दीर्घवृत्त $\frac{{{x^2}}}{8} + \frac{{{y^2}}}{4} = 1$ को स्पर्श करती है, तो $c = $
रेखा $y = x +1$, दीर्घवृत $\frac{ x ^2}{4}+\frac{ y ^2}{2}=1$ को दो बिन्दुओं $P$ तथा $Q$ पर मिलती है। यदि $PQ$ व्यास वाले वृत की त्रिज्या $r$ हो तो $(3 r )^2$ बराबर होगा-