- Home
- Standard 11
- Mathematics
एक $12$ सेमी लंबी छड़ इस प्रकार चलती है कि इसके सिरे निर्देशांक्षो को स्पर्श करते हैं। छड़ के बिंदु $P$ का बिंदुपथ ज्ञात कीजिए जो $x-$ अक्ष के संपर्क वाले सिरे से $3$ सेमी दूर है।
$\frac{x^{2}}{81}+\frac{y^2} {9}=1$
$\frac{x^{2}}{81}+\frac{y^2} {9}=1$
$\frac{x^{2}}{81}+\frac{y^2} {9}=1$
$\frac{x^{2}}{81}+\frac{y^2} {9}=1$
Solution

Let $AB$ be the rod making an angle $\theta$ with $O X$ and $P ( x ,\, y )$ be the point on it such that $AP =3\,cm$
Then, $PB = AB – AP =(12-3)\, cm =9\, cm$ $[ AB =12 \,cm ]$
From $P$, draw $PQ \perp OY$ and $PR \perp OX$.
In $\Delta PBQ$ , $\cos \theta=\frac{ PQ }{ PB }=\frac{x}{9}$
In $\Delta PRA$ , $\sin \theta=\frac{ PR }{ PA }=\frac{y}{3}$
since, $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\left(\frac{y}{3}\right)^{2}+\left(\frac{x}{9}\right)^{2}=1$
Or, $\frac{x^{2}}{81}+\frac{y^{2}}{9}=1$
Thus, the equation of the locus of point $P$ on the rod is $\frac{x^{2}}{81}+\frac{y^2} {9}=1$.