एक $12$ सेमी लंबी छड़ इस प्रकार चलती है कि इसके सिरे निर्देशांक्षो को स्पर्श करते हैं। छड़ के बिंदु $P$ का बिंदुपथ ज्ञात कीजिए जो $x-$ अक्ष के संपर्क वाले सिरे से $3$ सेमी दूर है।
Let $AB$ be the rod making an angle $\theta$ with $O X$ and $P ( x ,\, y )$ be the point on it such that $AP =3\,cm$
Then, $PB = AB - AP =(12-3)\, cm =9\, cm$ $[ AB =12 \,cm ]$
From $P$, draw $PQ \perp OY$ and $PR \perp OX$.
In $\Delta PBQ$ , $\cos \theta=\frac{ PQ }{ PB }=\frac{x}{9}$
In $\Delta PRA$ , $\sin \theta=\frac{ PR }{ PA }=\frac{y}{3}$
since, $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\left(\frac{y}{3}\right)^{2}+\left(\frac{x}{9}\right)^{2}=1$
Or, $\frac{x^{2}}{81}+\frac{y^{2}}{9}=1$
Thus, the equation of the locus of point $P$ on the rod is $\frac{x^{2}}{81}+\frac{y^2} {9}=1$.
माना दीर्धवृत्त $\frac{ x ^2}{ a ^2}+\frac{ y ^2}{4}=1, a > 2$, के अन्तर्गत, अधिकतम क्षेत्रफल वाले त्रिभुज का एक शीर्ष, दीर्घवत्त के दीर्घअक्ष के एक सिरे पर है तथा एक भुजा $y$-अक्ष के समान्तर है। यदि त्रिभुज का अधिकतम क्षेत्रफल $6 \sqrt{3}$ है तो दीर्घवृत्त की उत्केन्द्रता होगी :
दीर्घवृत्त के नाभियों के बीच की दूरी 16 तथा उत्केन्द्रता $\frac{1}{2}$ है। दीर्घवृत्त के दीर्घाक्ष की लम्बाई है
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के केन्द्र से इसकी किसी स्पर्श रेखा पर डाले गये लम्ब के पाद का बिन्दुपथ है
दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ की नाभिलम्ब जीवा के सिरों पर स्पर्शियों से निर्मित चतुभ्र्ज का क्षेत्रफल ............. वर्ग इकाई होगा
किसी दीर्घवृत्त की नाभियों के बीच की दूरी $6$ व लघुअक्ष $8$ है तो इसकी उत्केन्द्रता होगी