If the eccentricity of the two ellipse $\frac{{{x^2}}}{{169}} + \frac{{{y^2}}}{{25}} = 1$ and $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ are equal, then the value of $a/b$ is
$5\over{13}$
$6\over{13}$
$13\over5$
$13\over6$
The length of the chord of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to:
If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is
If $\theta $ and $\phi $ are eccentric angles of the ends of a pair of conjugate diameters of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then $\theta - \phi $ is equal to
Let the foci and length of the latus rectum of an ellipse $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ be $( \pm 5,0)$ and $\sqrt{50}$, respectively. Then, the square of the eccentricity of the hyperbola $\frac{\mathrm{x}^2}{\mathrm{~b}^2}-\frac{\mathrm{y}^2}{\mathrm{a}^2 \mathrm{~b}^2}=1$ equals
If the area of the auxiliary circle of the ellipse $\frac{{{x^2}}}{{{a^2}}}\, + \,\frac{{{y^2}}}{{{b^2}}}\, = \,1(a\, > \,b)$ is twice the area of the ellipse, then the eccentricity of the ellipse is